Automated Optimization Boosts ResNet50 Performance by 1.77x

By Tiffany Trader

October 23, 2018

From supercomputers to cell phones, every system and software device in our digital panoply has a growing number of settings that, if not optimized, constrain performance, wasting precious cycles and watts.

In the fast-growing field of AI, optimized systems yield faster training times and require less infrastructure. But the tuning process can be tedious and requires specialized skills. Startup Concertio, creator of performance optimization toolkit Optimizer Studio, is asking the question, “can we relieve data scientists from the need to understand their specific underlying infrastructure and from the need to optimize the performance of their models?”

In short: can the tuning process be automated?

Using Concertio’s optimization tool, Intel was able to accelerate TensorFlow implementations of three popular deep learning models, including
ResNet50, which saw a speedup of 1.77x over baseline. The result, described by Intel and Concertio, was achieved automatically without any manual effort, producing comparable speedup to manual tuning by Intel’s engineers. “What took tens of hours of manual labor was now done automatically in just two hours,” reported Concertio Co-founder and CEO Tomer Morad in a blog post, published today.

“Concertio’s Optimizer Studio was able to leverage the tunables of TensorFlow and Intel Xeon Scalable Processors to further accelerate deep learning workloads,” shared Dr. Arjun Bansal, vice president of AI Software and Research at Intel. “Optimizer Studio is able to relieve engineers from the task of finding optimal system settings, as it achieves at least comparable performance to manual tuning – but without the manual effort.”

Concertio’s Optimizer Studio tool (profiled by EnterpriseTech earlier this year) navigates the broad parameter space of system settings and application settings on today’s devices and works to maximize the performance by finding the best settings possible. Settings can be anywhere in the system — in the processor, the firmware, the operating system and also in the applications and application frameworks, like TensorFlow. Optimizer Studio runs the workload iteratively until it finds a configuration that performs well. The two parameters that Intel had Optimizer Studio zero in on for tuning its Tensorflow workload for ResNet50 are called intra_op and inter_op, which control model level parallelism and data parallelism.

Morad explains that optimizing these parameters can greatly accelerate throughput for the training, but there’s a tradeoff where higher values increase parallelism but also amplify the contention on shared resources such as the main memory and on-chip caches. There comes a point where the benefit of increased parallelism gets canceled out by the slowdown caused by increased contention. With inter_op values ranging from 1 to 28 and intra_op taking an even number from 10 to 56, there are 672 possible configurations to explore, so finding the optimized combination requires extensive experimentation that can take tens of hours.

The team of Intel AI engineers, led by Dr. Jayaram Bobba, performed the optimization using Concertio Optimizer Studio version 1.12 on an Intel Xeon Platinum 8180 processor (@ 2.50GHz) with 384GB RAM. It took two hours and 8 minutes to identify the optimal values for inter_op and intra_op (found to be 2 and 28, respectively).

This graph shows ResNet50 relative performance during optimization:

The first model that Intel evaluated, ResNet50, is a variant of Deep Residual Networks, the deep convolutional neural network created by
Microsoft. The Intel team extended its assessment to include GNMT (Google’s Neural Machine Translation System) and DeepSpeech, an open-source speech-to-text engine, implemented in TensorFlow. In this round of testing, Intel was looking to see whether optimized OS and CPU settings would provide further performance gains following manual optimization of their TensorFlow tunables. Using Optimizer Studio with the same Xeon test platform led to the discovery of settings that improved the performance by 8.3 percent and 8 percent for GNMT and DeepSpeech respectively.

Morad told HPCwire that Concertio and the Intel AI team crossed paths a while back when Concertio was meeting with another group at Intel in Hillsboro, Ore. The Intel AI team is constantly looking for ways to improve TensorFlow performance on Intel Architectures, so it was natural for them to explore a tool that promised to automate the tedious task of searching for optimal configurations. The Intel engineers downloaded the Optimizer Studio software and conducted the experiments. Along the way, they provided feedback to Concertio that went into improving the product.

It is Concertio’s expectation that users running TensorFlow who have not done regular system tuning will likely see a sizable speedup from Optimizer Studio. “Since the effort involved in manual tuning on a regular basis is significant, we see that in the vast majority of cases it just never happens,” said Morad. “This is one of the main advantages of using automation for this purpose — the tool allows integrating performance optimization into the CI/CD pipeline so that every software version that comes out is always performing at its best.”

“Our aim was to make Optimizer Studio as intuitive as possible to use, and it is satisfying to see that the majority of users are able to see results in the first day of use without requiring assistance,” said Morad. “That said, we love being engaged with our users and assisting them, and we do so through various channels, including via Slack.”

Developers can purchase annual licenses of Optimizer Studio directly from Concertio or through value-added distributors. High-performance computing users can also get these tools from Red Barn Technology Group, an HPC systems integrator headquartered in Binghamton, NY.

Read the blog for the full study as well to see configuration details and disclaimers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

Xilinx Says Its New FPGA is World’s Largest

August 21, 2019

In this age of exploding “technology disaggregation” – in which the Big Bang emanating from the Intel x86 CPU has produced significant advances in CPU chips and a raft of alternative, accelerated architectures... Read more…

By Doug Black

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This