Automated Optimization Boosts ResNet50 Performance by 1.77x

By Tiffany Trader

October 23, 2018

From supercomputers to cell phones, every system and software device in our digital panoply has a growing number of settings that, if not optimized, constrain performance, wasting precious cycles and watts.

In the fast-growing field of AI, optimized systems yield faster training times and require less infrastructure. But the tuning process can be tedious and requires specialized skills. Startup Concertio, creator of performance optimization toolkit Optimizer Studio, is asking the question, “can we relieve data scientists from the need to understand their specific underlying infrastructure and from the need to optimize the performance of their models?”

In short: can the tuning process be automated?

Using Concertio’s optimization tool, Intel was able to accelerate TensorFlow implementations of three popular deep learning models, including
ResNet50, which saw a speedup of 1.77x over baseline. The result, described by Intel and Concertio, was achieved automatically without any manual effort, producing comparable speedup to manual tuning by Intel’s engineers. “What took tens of hours of manual labor was now done automatically in just two hours,” reported Concertio Co-founder and CEO Tomer Morad in a blog post, published today.

“Concertio’s Optimizer Studio was able to leverage the tunables of TensorFlow and Intel Xeon Scalable Processors to further accelerate deep learning workloads,” shared Dr. Arjun Bansal, vice president of AI Software and Research at Intel. “Optimizer Studio is able to relieve engineers from the task of finding optimal system settings, as it achieves at least comparable performance to manual tuning – but without the manual effort.”

Concertio’s Optimizer Studio tool (profiled by EnterpriseTech earlier this year) navigates the broad parameter space of system settings and application settings on today’s devices and works to maximize the performance by finding the best settings possible. Settings can be anywhere in the system — in the processor, the firmware, the operating system and also in the applications and application frameworks, like TensorFlow. Optimizer Studio runs the workload iteratively until it finds a configuration that performs well. The two parameters that Intel had Optimizer Studio zero in on for tuning its Tensorflow workload for ResNet50 are called intra_op and inter_op, which control model level parallelism and data parallelism.

Morad explains that optimizing these parameters can greatly accelerate throughput for the training, but there’s a tradeoff where higher values increase parallelism but also amplify the contention on shared resources such as the main memory and on-chip caches. There comes a point where the benefit of increased parallelism gets canceled out by the slowdown caused by increased contention. With inter_op values ranging from 1 to 28 and intra_op taking an even number from 10 to 56, there are 672 possible configurations to explore, so finding the optimized combination requires extensive experimentation that can take tens of hours.

The team of Intel AI engineers, led by Dr. Jayaram Bobba, performed the optimization using Concertio Optimizer Studio version 1.12 on an Intel Xeon Platinum 8180 processor (@ 2.50GHz) with 384GB RAM. It took two hours and 8 minutes to identify the optimal values for inter_op and intra_op (found to be 2 and 28, respectively).

This graph shows ResNet50 relative performance during optimization:

The first model that Intel evaluated, ResNet50, is a variant of Deep Residual Networks, the deep convolutional neural network created by
Microsoft. The Intel team extended its assessment to include GNMT (Google’s Neural Machine Translation System) and DeepSpeech, an open-source speech-to-text engine, implemented in TensorFlow. In this round of testing, Intel was looking to see whether optimized OS and CPU settings would provide further performance gains following manual optimization of their TensorFlow tunables. Using Optimizer Studio with the same Xeon test platform led to the discovery of settings that improved the performance by 8.3 percent and 8 percent for GNMT and DeepSpeech respectively.

Morad told HPCwire that Concertio and the Intel AI team crossed paths a while back when Concertio was meeting with another group at Intel in Hillsboro, Ore. The Intel AI team is constantly looking for ways to improve TensorFlow performance on Intel Architectures, so it was natural for them to explore a tool that promised to automate the tedious task of searching for optimal configurations. The Intel engineers downloaded the Optimizer Studio software and conducted the experiments. Along the way, they provided feedback to Concertio that went into improving the product.

It is Concertio’s expectation that users running TensorFlow who have not done regular system tuning will likely see a sizable speedup from Optimizer Studio. “Since the effort involved in manual tuning on a regular basis is significant, we see that in the vast majority of cases it just never happens,” said Morad. “This is one of the main advantages of using automation for this purpose — the tool allows integrating performance optimization into the CI/CD pipeline so that every software version that comes out is always performing at its best.”

“Our aim was to make Optimizer Studio as intuitive as possible to use, and it is satisfying to see that the majority of users are able to see results in the first day of use without requiring assistance,” said Morad. “That said, we love being engaged with our users and assisting them, and we do so through various channels, including via Slack.”

Developers can purchase annual licenses of Optimizer Studio directly from Concertio or through value-added distributors. High-performance computing users can also get these tools from Red Barn Technology Group, an HPC systems integrator headquartered in Binghamton, NY.

Read the blog for the full study as well to see configuration details and disclaimers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated more efforts (academic, government, and commercial) but whose Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitment to holistic sustainability as well as launching a managed Read more…

By Oliver Peckham

New CMU AI Poker Bot – Pluribus – Humbles the Pros Again

July 15, 2019

Remember Libratus, the Carnegie Mellon University developed AI poker bot that’s been humbling poker professionals at Texas hold’em for a couple of years. Well, say hello to Pluribus, an upgraded bot, which has now be Read more…

By John Russell

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, some of the apps, like SWIFT and OpenFOAM, really pushed the st Read more…

By Dan Olds

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

New CMU AI Poker Bot – Pluribus – Humbles the Pros Again

July 15, 2019

Remember Libratus, the Carnegie Mellon University developed AI poker bot that’s been humbling poker professionals at Texas hold’em for a couple of years. We Read more…

By John Russell

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This