Phase Change Memory Shows Promise for AI Use Says IBM

By John Russell

October 24, 2018

Research into phase change memory (PCM) technology and its application to neuromorphic computing isn’t new, but it has steadily progressed with IBM playing an important role. Earlier this month, IBM researchers published a progress report in the AIP Journal of Applied Physics describing how PCM devices could implement select AI functions effectively and at lower power than traditional CMOS von Neumann circuits.

“We are on the cusp of a revolution in AI,” argue the authors. Near-term AI will depend on traditional CMOS circuits but then shift to include non-von Neumann ‘co-processing’ approaches.

“By augmenting conventional computing systems,” they wrote, “these systems could help achieve orders of magnitude improvement in performance and efficiency. In summary, we believe that we will see two stages of innovations that take us from the near term, where the AI accelerators are built with conventional CMOS, towards a period of innovation involving the computational approaches presented in this article.”

Time will tell if they are correct. The IBM researchers take pains to show how PCM devices can be used for in-memory computing functions such as matrix-vector multiplication, unsupervised learning, deep learning, spiking neural networks, and more. They also identify and briefly discuss the challenges, however the concrete examples presented suggest PCM technology is nearing viability for use in AI and other in-memory computing functions.

The IBM paper – Brain-inspired computing using phase-change memory devices by Abu Sebastian, Manuel Le Gallo, Geoffrey W. Burr, Sangbum Kim, Matthew BrightSky, and Evangelos Eleftheriou – is an interesting accessible read.

This illustration taken from the paper (below) shows their view of how technology use is divided among AI categories.

There’s also an article on the work (A New Brain-Inspired Architecture Could Improve How Computers Handle Data and Advance AI) posted on the AIP Publishing site in which Sebastian emphasized that executing certain computational tasks in the computer’s memory would increase the system’s efficiency and save energy:

“If you look at human beings, we compute with 20 to 30 watts of power, whereas AI today is based on supercomputers which run on kilowatts or megawatts of power,” Sebastian said in the article. “In the brain, synapses are both computing and storing information. In a new architecture, going beyond von Neumann, memory has to play a more active role in computing.”

The IBM team drew on three different levels of inspiration from the brain. The first level exploits a memory device’s state dynamics to perform computational tasks in the memory itself, similar to how the brain’s memory and processing are co-located. The second level draws on the brain’s synaptic network structures as inspiration for arrays of phase change memory (PCM) devices to accelerate training for deep neural networks. Lastly, the dynamic and stochastic nature of neurons and synapses inspired the team to create a powerful computational substrate for spiking neural networks.

By way of background, phase change memory is “based on the property of certain compounds of Ge, Te, and Sb that exhibit drastically different electrical characteristics depending on their atomic arrangement. In the disordered amorphous phase, these materials have very high resistivity, while in the ordered crystalline phase, they have very low resistivity.”

As described the authors, “When a current pulse of sufficiently high amplitude is applied to the PCM device (typically referred to as the RESET pulse), a significant portion of the phase change material melts owing to Joule heating. The typical melting temperature of phase-change materials is approx. 600 C. When the pulse is stopped abruptly so that temperature inside the heated device drops rapidly, the molten material quenches into the amorphous phase due to glass transition. In the resulting RESET state, the device will be in a high resistance state if the amorphous region blocks the bottom electrode.”

PCM has two critical properties governing its use in circuits:

  • The first key property of PCM that enables brain-inspired computing is its ability to achieve not just two levels but a continuum of resistance or conductance values. This is typically achieved by creating intermediate phase configurations by the application of suitable partial RESET pulses
  • The second key property that enables brain-inspired computing is the accumulative behavior arising from the crystallization dynamics… [O]ne can induce progressive reduction in the size of the amorphous region (and hence the device resistance) by the successive application of SET pulses with the same amplitude. However, it is not possible to achieve a progressive increase in the size of the amorphous region. Hence, the curve shown in Fig. 3(c) typically referred to as the accumulation curve, is unidirectional.

Using these properties it is possible to implement a variety of logical, arithmetic, and machine learning functions with PCM memory.

Compressed sensing and recovery, say the researchers, is one of the applications that could benefit from a computational memory unit that performs matrix-vector multiplications. They note:

“The objective behind compressed sensing is to acquire a large signal at a sub-Nyquist sampling rate and subsequently reconstruct that signal accurately. Unlike most other compression schemes, sampling and compression are done simultaneously, with the signal getting compressed as it is sampled. Such techniques have widespread applications in the domains of medical imaging, security systems, and camera sensors.

“The compressed measurements can be thought of as a mapping of a signal x of length N to a measurement vector y of length M < N. If this process is linear, then it can be modeled by an M N measurement matrix M. The idea is to store this measurement matrix in the computational memory unit, with PCM devices organized in a cross-bar configuration [see Fig. 6(a)]. This allows us to perform the compression in O(1) time complexity. An approximate message passing algorithm (AMP) can be used to recover the original signal from the compressed measurements, using an iterative algorithm that involves several matrix-vector multiplications on the very same measurement matrix and its transpose. In this way, we can also use the same matrix that was coded in the computational memory unit for the reconstruction, reducing the reconstruction complexity.”

Shown here is an experimental illustration of compressed sensing recovery in the context of image compression. A 128 x128 pixel image was compressed by 50% and recovered using the measurement matrix elements encoded in a PCM array.

A key challenge with computational memory, concede the researchers, is the lack of high precision. Even though approximate solutions are sufficient for many computational tasks in the domain of AI, there are some applications that require that the solutions are obtained with arbitrarily high accuracy.

“Fortunately, many such computational tasks can be formulated as a sequence of two distinct parts. In the first part, an approximate solution is obtained; in the second part, the resulting error in the overall objective is calculated accurately. Then, based on this, the approximate solution is refined by repeating the first part. Step I typically has a high computational load, whereas Step II has a light computational load. This forms the foundation for the concept of mixed-precision in-memory computing: the use of a computational memory unit in conjunction with a high-precision von Neumann machine.23 The low-precision computational memory unit can be used to obtain an approximate solution as discussed earlier. The high-precision von Neumann machine can be used to calculate the error precisely. The bulk of the computation is still realized in computational memory, and hence we still achieve significant areal/power/ speed improvements while addressing the key challenge of imprecision associated with computational memory),” they wrote.

You get the flavor of the paper. It is an interesting overview, best read directly, showing the promising progress made in formulating ideas for structuring PCM and PCM-cum-traditional circuits for implementing AI functions.

Link to paper: https://aip.scitation.org/doi/10.1063/1.5042413

Link to AIP article on the work: https://publishing.aip.org/publishing/journal-highlights/new-brain-inspired-architecture-could-improve-how-computers-handle

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Dark Matter, Arrhythmia, Sustainability & More

February 28, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Microsoft Announces General Availability of AMD-backed Azure HBv2 Instances for HPC

February 27, 2020

Nearly seven months after they were first announced, Microsoft Azure’s HPC-targeted HBv2 virtual machines (VMs) based on AMD second-generation Epyc processors are ready for primetime. The new VMs, which Azure claims of Read more…

By Staff report

Sequoia Decommissioned, Making Room for El Capitan

February 27, 2020

After eight years of service, Sequoia has been felled. Once the most powerful publicly ranked supercomputer in the world, Sequoia – hosted by Lawrence Livermore National Laboratory (LLNL) – has been decommissioned to Read more…

By Oliver Peckham

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Blue Waters Supercomputer Helps Tackle Pandemic Flu Simulations

February 26, 2020

While not the novel coronavirus that is now sweeping across the world, the 2009 H1N1 flu pandemic (pH1N1) infected up to 21 percent of the global population and killed over 200,000 people. Now, a team of researchers from Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Micron Accelerator Bumps Up Memory Bandwidth

February 26, 2020

Deep learning accelerators based on chip architectures coupled with high-bandwidth memory are emerging to enable near real-time processing of machine learning algorithms. Memory chip specialist Micron Technology argues t Read more…

By George Leopold

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

NOAA Lays Out Aggressive New AI Strategy

February 24, 2020

Roughly coincident with last week’s announcement of a planned tripling of its compute capacity, the National Oceanic and Atmospheric Administration issued an Read more…

By John Russell

New Supercomputer Cooling Method Saves Half-Million Gallons of Water at Sandia National Laboratories

February 24, 2020

A new cooling method for supercomputer systems is picking up steam – literally. After saving millions of gallons of water at a National Renewable Energy Laboratory (NREL) datacenter, this innovative approach, called... Read more…

By Oliver Peckham

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This