Phase Change Memory Shows Promise for AI Use Says IBM

By John Russell

October 24, 2018

Research into phase change memory (PCM) technology and its application to neuromorphic computing isn’t new, but it has steadily progressed with IBM playing an important role. Earlier this month, IBM researchers published a progress report in the AIP Journal of Applied Physics describing how PCM devices could implement select AI functions effectively and at lower power than traditional CMOS von Neumann circuits.

“We are on the cusp of a revolution in AI,” argue the authors. Near-term AI will depend on traditional CMOS circuits but then shift to include non-von Neumann ‘co-processing’ approaches.

“By augmenting conventional computing systems,” they wrote, “these systems could help achieve orders of magnitude improvement in performance and efficiency. In summary, we believe that we will see two stages of innovations that take us from the near term, where the AI accelerators are built with conventional CMOS, towards a period of innovation involving the computational approaches presented in this article.”

Time will tell if they are correct. The IBM researchers take pains to show how PCM devices can be used for in-memory computing functions such as matrix-vector multiplication, unsupervised learning, deep learning, spiking neural networks, and more. They also identify and briefly discuss the challenges, however the concrete examples presented suggest PCM technology is nearing viability for use in AI and other in-memory computing functions.

The IBM paper – Brain-inspired computing using phase-change memory devices by Abu Sebastian, Manuel Le Gallo, Geoffrey W. Burr, Sangbum Kim, Matthew BrightSky, and Evangelos Eleftheriou – is an interesting accessible read.

This illustration taken from the paper (below) shows their view of how technology use is divided among AI categories.

There’s also an article on the work (A New Brain-Inspired Architecture Could Improve How Computers Handle Data and Advance AI) posted on the AIP Publishing site in which Sebastian emphasized that executing certain computational tasks in the computer’s memory would increase the system’s efficiency and save energy:

“If you look at human beings, we compute with 20 to 30 watts of power, whereas AI today is based on supercomputers which run on kilowatts or megawatts of power,” Sebastian said in the article. “In the brain, synapses are both computing and storing information. In a new architecture, going beyond von Neumann, memory has to play a more active role in computing.”

The IBM team drew on three different levels of inspiration from the brain. The first level exploits a memory device’s state dynamics to perform computational tasks in the memory itself, similar to how the brain’s memory and processing are co-located. The second level draws on the brain’s synaptic network structures as inspiration for arrays of phase change memory (PCM) devices to accelerate training for deep neural networks. Lastly, the dynamic and stochastic nature of neurons and synapses inspired the team to create a powerful computational substrate for spiking neural networks.

By way of background, phase change memory is “based on the property of certain compounds of Ge, Te, and Sb that exhibit drastically different electrical characteristics depending on their atomic arrangement. In the disordered amorphous phase, these materials have very high resistivity, while in the ordered crystalline phase, they have very low resistivity.”

As described the authors, “When a current pulse of sufficiently high amplitude is applied to the PCM device (typically referred to as the RESET pulse), a significant portion of the phase change material melts owing to Joule heating. The typical melting temperature of phase-change materials is approx. 600 C. When the pulse is stopped abruptly so that temperature inside the heated device drops rapidly, the molten material quenches into the amorphous phase due to glass transition. In the resulting RESET state, the device will be in a high resistance state if the amorphous region blocks the bottom electrode.”

PCM has two critical properties governing its use in circuits:

  • The first key property of PCM that enables brain-inspired computing is its ability to achieve not just two levels but a continuum of resistance or conductance values. This is typically achieved by creating intermediate phase configurations by the application of suitable partial RESET pulses
  • The second key property that enables brain-inspired computing is the accumulative behavior arising from the crystallization dynamics… [O]ne can induce progressive reduction in the size of the amorphous region (and hence the device resistance) by the successive application of SET pulses with the same amplitude. However, it is not possible to achieve a progressive increase in the size of the amorphous region. Hence, the curve shown in Fig. 3(c) typically referred to as the accumulation curve, is unidirectional.

Using these properties it is possible to implement a variety of logical, arithmetic, and machine learning functions with PCM memory.

Compressed sensing and recovery, say the researchers, is one of the applications that could benefit from a computational memory unit that performs matrix-vector multiplications. They note:

“The objective behind compressed sensing is to acquire a large signal at a sub-Nyquist sampling rate and subsequently reconstruct that signal accurately. Unlike most other compression schemes, sampling and compression are done simultaneously, with the signal getting compressed as it is sampled. Such techniques have widespread applications in the domains of medical imaging, security systems, and camera sensors.

“The compressed measurements can be thought of as a mapping of a signal x of length N to a measurement vector y of length M < N. If this process is linear, then it can be modeled by an M N measurement matrix M. The idea is to store this measurement matrix in the computational memory unit, with PCM devices organized in a cross-bar configuration [see Fig. 6(a)]. This allows us to perform the compression in O(1) time complexity. An approximate message passing algorithm (AMP) can be used to recover the original signal from the compressed measurements, using an iterative algorithm that involves several matrix-vector multiplications on the very same measurement matrix and its transpose. In this way, we can also use the same matrix that was coded in the computational memory unit for the reconstruction, reducing the reconstruction complexity.”

Shown here is an experimental illustration of compressed sensing recovery in the context of image compression. A 128 x128 pixel image was compressed by 50% and recovered using the measurement matrix elements encoded in a PCM array.

A key challenge with computational memory, concede the researchers, is the lack of high precision. Even though approximate solutions are sufficient for many computational tasks in the domain of AI, there are some applications that require that the solutions are obtained with arbitrarily high accuracy.

“Fortunately, many such computational tasks can be formulated as a sequence of two distinct parts. In the first part, an approximate solution is obtained; in the second part, the resulting error in the overall objective is calculated accurately. Then, based on this, the approximate solution is refined by repeating the first part. Step I typically has a high computational load, whereas Step II has a light computational load. This forms the foundation for the concept of mixed-precision in-memory computing: the use of a computational memory unit in conjunction with a high-precision von Neumann machine.23 The low-precision computational memory unit can be used to obtain an approximate solution as discussed earlier. The high-precision von Neumann machine can be used to calculate the error precisely. The bulk of the computation is still realized in computational memory, and hence we still achieve significant areal/power/ speed improvements while addressing the key challenge of imprecision associated with computational memory),” they wrote.

You get the flavor of the paper. It is an interesting overview, best read directly, showing the promising progress made in formulating ideas for structuring PCM and PCM-cum-traditional circuits for implementing AI functions.

Link to paper: https://aip.scitation.org/doi/10.1063/1.5042413

Link to AIP article on the work: https://publishing.aip.org/publishing/journal-highlights/new-brain-inspired-architecture-could-improve-how-computers-handle

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This