Phase Change Memory Shows Promise for AI Use Says IBM

By John Russell

October 24, 2018

Research into phase change memory (PCM) technology and its application to neuromorphic computing isn’t new, but it has steadily progressed with IBM playing an important role. Earlier this month, IBM researchers published a progress report in the AIP Journal of Applied Physics describing how PCM devices could implement select AI functions effectively and at lower power than traditional CMOS von Neumann circuits.

“We are on the cusp of a revolution in AI,” argue the authors. Near-term AI will depend on traditional CMOS circuits but then shift to include non-von Neumann ‘co-processing’ approaches.

“By augmenting conventional computing systems,” they wrote, “these systems could help achieve orders of magnitude improvement in performance and efficiency. In summary, we believe that we will see two stages of innovations that take us from the near term, where the AI accelerators are built with conventional CMOS, towards a period of innovation involving the computational approaches presented in this article.”

Time will tell if they are correct. The IBM researchers take pains to show how PCM devices can be used for in-memory computing functions such as matrix-vector multiplication, unsupervised learning, deep learning, spiking neural networks, and more. They also identify and briefly discuss the challenges, however the concrete examples presented suggest PCM technology is nearing viability for use in AI and other in-memory computing functions.

The IBM paper – Brain-inspired computing using phase-change memory devices by Abu Sebastian, Manuel Le Gallo, Geoffrey W. Burr, Sangbum Kim, Matthew BrightSky, and Evangelos Eleftheriou – is an interesting accessible read.

This illustration taken from the paper (below) shows their view of how technology use is divided among AI categories.

There’s also an article on the work (A New Brain-Inspired Architecture Could Improve How Computers Handle Data and Advance AI) posted on the AIP Publishing site in which Sebastian emphasized that executing certain computational tasks in the computer’s memory would increase the system’s efficiency and save energy:

“If you look at human beings, we compute with 20 to 30 watts of power, whereas AI today is based on supercomputers which run on kilowatts or megawatts of power,” Sebastian said in the article. “In the brain, synapses are both computing and storing information. In a new architecture, going beyond von Neumann, memory has to play a more active role in computing.”

The IBM team drew on three different levels of inspiration from the brain. The first level exploits a memory device’s state dynamics to perform computational tasks in the memory itself, similar to how the brain’s memory and processing are co-located. The second level draws on the brain’s synaptic network structures as inspiration for arrays of phase change memory (PCM) devices to accelerate training for deep neural networks. Lastly, the dynamic and stochastic nature of neurons and synapses inspired the team to create a powerful computational substrate for spiking neural networks.

By way of background, phase change memory is “based on the property of certain compounds of Ge, Te, and Sb that exhibit drastically different electrical characteristics depending on their atomic arrangement. In the disordered amorphous phase, these materials have very high resistivity, while in the ordered crystalline phase, they have very low resistivity.”

As described the authors, “When a current pulse of sufficiently high amplitude is applied to the PCM device (typically referred to as the RESET pulse), a significant portion of the phase change material melts owing to Joule heating. The typical melting temperature of phase-change materials is approx. 600 C. When the pulse is stopped abruptly so that temperature inside the heated device drops rapidly, the molten material quenches into the amorphous phase due to glass transition. In the resulting RESET state, the device will be in a high resistance state if the amorphous region blocks the bottom electrode.”

PCM has two critical properties governing its use in circuits:

  • The first key property of PCM that enables brain-inspired computing is its ability to achieve not just two levels but a continuum of resistance or conductance values. This is typically achieved by creating intermediate phase configurations by the application of suitable partial RESET pulses
  • The second key property that enables brain-inspired computing is the accumulative behavior arising from the crystallization dynamics… [O]ne can induce progressive reduction in the size of the amorphous region (and hence the device resistance) by the successive application of SET pulses with the same amplitude. However, it is not possible to achieve a progressive increase in the size of the amorphous region. Hence, the curve shown in Fig. 3(c) typically referred to as the accumulation curve, is unidirectional.

Using these properties it is possible to implement a variety of logical, arithmetic, and machine learning functions with PCM memory.

Compressed sensing and recovery, say the researchers, is one of the applications that could benefit from a computational memory unit that performs matrix-vector multiplications. They note:

“The objective behind compressed sensing is to acquire a large signal at a sub-Nyquist sampling rate and subsequently reconstruct that signal accurately. Unlike most other compression schemes, sampling and compression are done simultaneously, with the signal getting compressed as it is sampled. Such techniques have widespread applications in the domains of medical imaging, security systems, and camera sensors.

“The compressed measurements can be thought of as a mapping of a signal x of length N to a measurement vector y of length M < N. If this process is linear, then it can be modeled by an M N measurement matrix M. The idea is to store this measurement matrix in the computational memory unit, with PCM devices organized in a cross-bar configuration [see Fig. 6(a)]. This allows us to perform the compression in O(1) time complexity. An approximate message passing algorithm (AMP) can be used to recover the original signal from the compressed measurements, using an iterative algorithm that involves several matrix-vector multiplications on the very same measurement matrix and its transpose. In this way, we can also use the same matrix that was coded in the computational memory unit for the reconstruction, reducing the reconstruction complexity.”

Shown here is an experimental illustration of compressed sensing recovery in the context of image compression. A 128 x128 pixel image was compressed by 50% and recovered using the measurement matrix elements encoded in a PCM array.

A key challenge with computational memory, concede the researchers, is the lack of high precision. Even though approximate solutions are sufficient for many computational tasks in the domain of AI, there are some applications that require that the solutions are obtained with arbitrarily high accuracy.

“Fortunately, many such computational tasks can be formulated as a sequence of two distinct parts. In the first part, an approximate solution is obtained; in the second part, the resulting error in the overall objective is calculated accurately. Then, based on this, the approximate solution is refined by repeating the first part. Step I typically has a high computational load, whereas Step II has a light computational load. This forms the foundation for the concept of mixed-precision in-memory computing: the use of a computational memory unit in conjunction with a high-precision von Neumann machine.23 The low-precision computational memory unit can be used to obtain an approximate solution as discussed earlier. The high-precision von Neumann machine can be used to calculate the error precisely. The bulk of the computation is still realized in computational memory, and hence we still achieve significant areal/power/ speed improvements while addressing the key challenge of imprecision associated with computational memory),” they wrote.

You get the flavor of the paper. It is an interesting overview, best read directly, showing the promising progress made in formulating ideas for structuring PCM and PCM-cum-traditional circuits for implementing AI functions.

Link to paper: https://aip.scitation.org/doi/10.1063/1.5042413

Link to AIP article on the work: https://publishing.aip.org/publishing/journal-highlights/new-brain-inspired-architecture-could-improve-how-computers-handle

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This