Europe Launches Ten-year, €1B Quantum Flagship Project

By John Russell

October 29, 2018

The European Union today jumped into the increasingly globalized race for viable quantum computing technology with the launch of a €1 billion Quantum Flagship project intended “to place Europe at the forefront of Quantum innovation.” Just last month, the U.S. House passed a $1.275B national quantum initiative which the Senate is expected to approve soon. China had embarked on a national program even earlier including a reported planned investment of $10 billion into a national quantum research center[i].

The worldwide race for quantum computing writ large is heating up.

Europe’s latest Flagship project was announced at a conference in Austria. Like the U.S. quantum initiative, the Quantum Flagship is a ten-year project. It will involve more the 5000 European researchers, according to the announcement, and twenty projects of the initial 140 submitted projects (examples listed below) will be tackled during Quantum Flagship’s early stages.

The initiative identifies five main areas of study:

  • Quantum Communication
  • Quantum Computing
  • Quantum Simulation
  • Quantum Metrology and Sensing
  • Basic Science

QF’s stated goals – like those generally cited by its global rivals – are ambitious: “[Quantum Flagship] aims to bring disruptive quantum technologies to the scientific arena and to society in general by bringing forward new commercial opportunities addressing global challenges, providing strategic capabilities for security and seeding yet unimagined applications for the future. It will build a network of European Quantum Technologies programs that will foster an ecosystem capable of delivering the knowledge, technologies and open research infrastructures and testbeds necessary for the development of a world-leading knowledge-based industry in Europe.”

How all of this will play out remains unclear. A number of commercial players – e.g. IBM, Google, Microsoft, Rigetti, D-Wave – are busily pursuing their own paths and there are now three “quantum cloud” offerings in various stages of roll-out available to quantum tinkerers. It is really difficult to know how long the development cycle will take to produce viable quantum systems. The EU project is characterizing its efforts as tackling The Second Quantum revolution presumably because many of the basics have already been worked out.

Tommaso Calarco, of the Institute for Quantum Control of Forschungszentrum Jülich, is the ‘coordinator of the Quantum Coordination and Support Action’ in charge of successfully launching the Quantum Flagship. “The European Quantum Technologies community has worked long and hard towards realizing this initiative. We are very happy that the first research and innovation actions are now ready to start with high momentum. Together, we will further strengthen Europe’s leading role in quantum research and transfer the insights from this into relevant applications for the benefit of all European citizens,” he said in the official announcement.

The first 3-year phase of the Quantum Flagship, “named the ramp-up phase”, will run through September 2021 and fund projects with an overall budget of 132 million euros. Of the140 submitted proposals, 10 were for quantum communication, 11 for quantum computing, six for quantum simulation, 22 for quantum metrology and sensing, and 90 for basic science.

Shown here are descriptions of a few of the first 20 projects selected by Quantum Flagship (name of project, organization undertaking the project, description):

Quantum Communication

  • Continuous Variable Quantum Communications, ICFO, Spain – The goal of the CiViQ project is to provide optical telecommunication networks with unconditional security by developing quantum key distribution technologies with an unprecedented level of flexibility and cost-effective integration into current infrastructures.
  • Quantum Internet Alliance, Technische Universiteit Delft, Netherlands – The Quantum Internet Alliance will create a Blueprint for a pan-European Quantum Internet by developing all essential subsystems – quantum repeaters, end nodes as well as the first quantum network stack – culminating in the first experimental demonstration of a fully integrated stack running on a multi-node quantum network.
  • Quantum Random Number Generators: cheaper, faster and more secure, Universite de Geneve, Switzerland – Based on new concepts, QRANGE will develop prototypes of quantum random number generators that are cheap and compact or faster and more secure. We complement these technical advancements with use-case specifications and a certification framework.
  • Affordable Quantum Communication for Everyone: Revolutionizing the Quantum Ecosystem from Fabrication to Application, AIT Austrian Institute of Technology GmbH, Austria – UNIQORN develops cost-effective physical-layer technology to drive quantum communication applications and bolster future volume production. The focus lies on the shoehorning of quantum components towards system-on-chip implementations that will ultimately enrich global communication networks.

Quantum Computing

  • Advanced quantum computing with trapped ions, Universität Innsbruck, Austria – The AQTION consortium will realize a fully-automated ion-trap quantum computer to solve scientific and commercially interesting problems beyond the capabilities of classical computers.
  • An Open Superconducting Quantum Computer, Universität des Saarlandes, Germany– OpenSuperQ will build a quantum computer with up to 100 qubits that cannot be simulated on current classical supercomputers. One system will be installed in a central quantum computing laboratory and be accessible for the community.  Its technology will be as open as possible.

Quantum Simulation

  • Programmable Atomic Large-Scale Quantum Simulation, Max-Planck-Gesellschaft zur Forderung der Wissenschaften eV, Germany – The goal of PASQuanS is to push the already well-advanced neutral atom and ion-based quantum simulation platforms far beyond both the state-of-the-art and the reach of classical computation. Full programmability will make it possible to address quantum annealing or optimization problems.
  • Quantum simulation and entanglement engineering in quantum cascade laser frequency combs, Consiglio Nazionale delle Ricerche, Italy – The Qombs project aims to create a quantum simulator platform made of ultracold atoms for engineering a new generation of quantum cascade laser frequency combs characterized by non-classical emission and entanglement among the comb modes, to be exploited for quantum communication and detection.

Not surprisingly, the European quantum research community is excited by the new opportunity. Niels Bohr Institute (NBI) at the University of Copenhagen, for example, has deep history in quantum research and will participate in the Quantum Flagship project and released its own announcement.

“The EU Flagship provides a unique opportunity to engage in research alliances that link the strongest academic groups together in the effort to solve some of the major challenges facing society, such as security or supercomputing. The ultimate dream is to build is to build quantum computers that can solve problems that are impossible with existing computers—or a quantum internet, where unbreakable communication can take place risk free and security is guaranteed by the laws of quantum physics,” said Peter Lodahl, a professor at the NBI who is the head of the group ‘Quantum Photonics’, which, among other things, focuses on producing photonic chips that could be used for quantum technology based on light

After the Graphene Flagship and the Human Brain Project, the Quantum Flagship is the third large-scale research and innovation Flagship initiative funded by the European Commission.

Link to Quantum Flagship website: https://qt.eu

Link to announcement: https://qt.eu/news/quantum-technologies-launch-press-release/

Link to Niels Bohr Institute: http://www.nbi.ku.dk/english/news/news18/a-billion-euros-for-quantum-research/

[i]https://www.scmp.com/news/china/economy/article/2140860/china-winning-race-us-develop-quantum-computers

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

From Deep Blue to Summit – 30 Years of Supercomputing Innovation

This week, in honor of the 30th anniversary of the SC conference, we are highlighting some of the most significant IBM contributions to supercomputing over the past 30 years. Read more…

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This