Cray Unveils Shasta, Lands NERSC-9 Contract

By Tiffany Trader

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We’ve known of the code-name “Shasta” since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn’t slow down its timeline for Shasta. Set for commercial launch in late 2019, the exascale-class architecture unifies the Cray supercomputer and cluster product lines and debuts a brand-new Cray-designed system interconnect, called Slingshot.

In tandem with Cray’s Shasta disclosures, the U.S. Department of Energy (DOE) is announcing that NERSC, the National Energy Research Scientific Computing Center, has chosen a Cray Shasta supercomputer for its NERSC-9 system, slated for delivery in late 2020. Named “Perlmutter” (after Nobel Prize winning astrophysicist Saul Perlmutter), the system will feature AMD Epyc processors and Nvidia GPUs offering a combined peak performance of ~100 petaflops and a sustained application performance equivalent to about 3X that of the Cray Cori (NERSC-8) supercomputer. The new contract, which includes a Cray Clusterstor storage system, is worth a reported $146 million, one of the largest in Cray’s history. (We’ll be reporting additional details of the NERSC-9 system soon.)

Cray’s Steve Scott

Shasta will be the first Cray architecture to support multiple cabinet types, a 19” air- or liquid-cooled, standard datacenter rack and a high-density, liquid-cooled rack designed to hold 64 compute blades with multiple processors per blade. Both options can scale to well over 100 cabinets, according to Cray.

Currently Cray’s product set is divided between its CS line — dating to its Appro acquisition and featuring commodity software, a third-party interconnect and a standard 19” rack — and its flagship XC line, the dense, scale-optimized, liquid-cooled rack offering that integrates its custom Aries interconnect and a custom software stack. Shasta breaks this convention and allows the user to have the Cray custom interconnect and software stack in either form factor. Shasta also emphasizes infrastructure choice, offering from one to 16 nodes per compute blade, support for x86 (Intel and AMD), Arm (Marvell), GPUs (Nvidia and AMD) in the same system, as well as system interconnects from Cray (Slingshot), Intel (Omni-Path) or Mellanox (InfiniBand). Cray also supports FPGAs and anticipates offering support for one or more of the emerging ML accelerators in the next one-to-two years.

“We designed Shasta with both extreme performance and flexibility,” comments Cray CTO Steve Scott in an interview with HPCwire. “The new system architecture is motivated by increasingly heterogeneous data-centric workloads. We’re seeing more and more customers wanting to run workflows containing simulation and analytics and AI, and we needed systems that could handle all of these simultaneously, moving away from the siloed situation of different systems optimized for different workloads.”

The new architecture has the ability to handle high processor power levels with direct liquid cooling, supporting W4-class warm water cooling (up to 45-degree Celsius water). Per cabinet cooling tops out at 250 kilowatts initially, increasing to 300 kilowatts per cabinet within the first year after launch, according to Cray.

Introducing Slingshot, Cray’s 8th Generation HPC Network

One of the biggest hardware revelations in the Shasta unveiling is a new interconnect, called Slingshot, designed to scale to exascale and beyond with support for over 250,000 end points. The heart of slingshot is a 64-port switch with 200 Gbps ports (based on 50 Gbps signalling technology), providing 12.8 Tbps bandwidth per switch. Slingshot implements the Dragonfly topology, which Cray invented in 2008. Cray reduced the network diameter from five hops in the current Cray XC generation Dragonfly topology, to three hops for Slingshot, with a reported latency of around 300 nanoseconds per hop.

“Fewer hops results in lower latency, reliability goes up, and the adaptive routing gets that much better because at the place where you’re making the routing decisions you’ve got a pretty good idea of the global state of the network because of the really low diameter and because our switches exchange information with each other about the state of congestion in the network,” says Scott.

Slingshot is said to be highly configurable in that it can accommodate different node sizes and can vary the amount of network injection bandwidth to match workloads. Cray also made Slingshot Ethernet compatible to enable interoperability with third-party storage devices and datacenters in support of today’s greater need for data exchange between platforms.

Scott is especially proud of Slingshot’s novel congestion control mechanism, claimed to dramatically reduce queuing latency in the network. Scott says this is where, in practice, most latency actually comes from and the mechanism provides strong performance isolation between workloads. He adds that this is something that’s notoriously difficult to do and no one has done it yet for HPC workloads.

“There are existing congestion control mechanisms designed for datacenters and they are particularly difficult to tune. They are fragile. They are slow to converge and they just don’t work well for HPC workloads. We’ve cracked the code and figured out how to do this with Slingshot,” says Scott. “It means you’re going to get low latency, both for average latency and tail latency (the latency that the slowest 1 percent or tenth of a percent of packets experience). In traditional HPC systems, Cray’s current systems included, one workload that causes congestion can really interfere with other workloads running on the system and cause those latencies and especially those tail latencies to go off, so Slingshot’s really going to provide performance isolation and provide low and consistent network latency.”

All Together Now

Scott adds that another key part of their data-centric design is having a really strong I/O and storage system. With Shasta, Cray takes the storage system, which typically has been external to the supercomputer, and pulls it into the supercomputer directly onto the high-speed Slingshot network, obviating the need for L net router nodes and external InfiniBand network. “We will have high-performance flash and hard drive based storage enclosures that attach directly onto the Slingshot network. This reduces complexity, reduces latency and really improves the performance, especially for fine-grained I/O,” says Scott, adding that a high-performance flash tier plus a high capacity hard-drive based tier will be unified in the same Lustre namespace with tiering between them.

“Cray is widely seen as one of only a few HPC vendors worldwide that is capable of aggressive technology innovation at the system architecture level,” said Steve Conway, Hyperion Research senior vice president of research, in support of today’s announcement. “Cray’s Shasta architecture closely matches the wish list that leading HPC users have for the exascale era, but didn’t expect to be available this soon. This is truly a breakthrough achievement.”

Another vote of confidence came from Dr. Sudip Dosanjh, director of the NERSC Center at Lawrence Berkeley National Laboratory, where a Shasta system with a mix of AMD Epyc CPUs and Nvidia GPUs will be supporting a diverse set of HPC workloads.

NERSC Edison Cray XC30 supercomputer, accepted in 2013 and scheduled to be retired on March 31, 2019. Edison was one of the first “Cascade” XC systems delivered by Cray.

“Our scientists gather massive amounts of data from scientific instruments like telescopes and detectors that our supercomputers analyze every day,” said Dosanjh. “The Shasta system’s ease of use and adaptability to modern workflows and applications will allow us to broaden access to supercomputing and enable a whole new pool of users. The ability to bring this data into the supercomputer will allow us to quickly and efficiently scale and reduce overall time to discovery.  We value being able to work closely with Cray to provide our feedback on this next generation system which is so critical to extending our Center’s innovation.”

It’s been a few years and a few technology generations since we’ve seen AMD+Nvidia together in a leadership-class system, but Cray notes that there was no technical challenge or special work required to use AMD CPUs with Nvidia GPUs. “Both are designed well to work with other components, and Cray’s programming environment is well suited for targeting them,” a company spokesperson told us.

Cray expects to share specific product information and system names next spring in anticipation of making Shasta systems commercially available by the end of 2019. Cray will be showcasing Shasta and Slingshot next month (Nov. 11-16) at the 30th anniversary of the Supercomputing (SC) conference in Dallas, Texas.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire