Cray Unveils Shasta, Lands NERSC-9 Contract

By Tiffany Trader

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We’ve known of the code-name “Shasta” since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn’t slow down its timeline for Shasta. Set for commercial launch in late 2019, the exascale-class architecture unifies the Cray supercomputer and cluster product lines and debuts a brand-new Cray-designed system interconnect, called Slingshot.

In tandem with Cray’s Shasta disclosures, the U.S. Department of Energy (DOE) is announcing that NERSC, the National Energy Research Scientific Computing Center, has chosen a Cray Shasta supercomputer for its NERSC-9 system, slated for delivery in late 2020. Named “Perlmutter” (after Nobel Prize winning astrophysicist Saul Perlmutter), the system will feature AMD Epyc processors and Nvidia GPUs offering a combined peak performance of ~100 petaflops and a sustained application performance equivalent to about 3X that of the Cray Cori (NERSC-8) supercomputer. The new contract, which includes a Cray Clusterstor storage system, is worth a reported $146 million, one of the largest in Cray’s history. (We’ll be reporting additional details of the NERSC-9 system soon.)

Cray’s Steve Scott

Shasta will be the first Cray architecture to support multiple cabinet types, a 19” air- or liquid-cooled, standard datacenter rack and a high-density, liquid-cooled rack designed to hold 64 compute blades with multiple processors per blade. Both options can scale to well over 100 cabinets, according to Cray.

Currently Cray’s product set is divided between its CS line — dating to its Appro acquisition and featuring commodity software, a third-party interconnect and a standard 19” rack — and its flagship XC line, the dense, scale-optimized, liquid-cooled rack offering that integrates its custom Aries interconnect and a custom software stack. Shasta breaks this convention and allows the user to have the Cray custom interconnect and software stack in either form factor. Shasta also emphasizes infrastructure choice, offering from one to 16 nodes per compute blade, support for x86 (Intel and AMD), Arm (Marvell), GPUs (Nvidia and AMD) in the same system, as well as system interconnects from Cray (Slingshot), Intel (Omni-Path) or Mellanox (InfiniBand). Cray also supports FPGAs and anticipates offering support for one or more of the emerging ML accelerators in the next one-to-two years.

“We designed Shasta with both extreme performance and flexibility,” comments Cray CTO Steve Scott in an interview with HPCwire. “The new system architecture is motivated by increasingly heterogeneous data-centric workloads. We’re seeing more and more customers wanting to run workflows containing simulation and analytics and AI, and we needed systems that could handle all of these simultaneously, moving away from the siloed situation of different systems optimized for different workloads.”

The new architecture has the ability to handle high processor power levels with direct liquid cooling, supporting W4-class warm water cooling (up to 45-degree Celsius water). Per cabinet cooling tops out at 250 kilowatts initially, increasing to 300 kilowatts per cabinet within the first year after launch, according to Cray.

Introducing Slingshot, Cray’s 8th Generation HPC Network

One of the biggest hardware revelations in the Shasta unveiling is a new interconnect, called Slingshot, designed to scale to exascale and beyond with support for over 250,000 end points. The heart of slingshot is a 64-port switch with 200 Gbps ports (based on 50 Gbps signalling technology), providing 12.8 Tbps bandwidth per switch. Slingshot implements the Dragonfly topology, which Cray invented in 2008. Cray reduced the network diameter from five hops in the current Cray XC generation Dragonfly topology, to three hops for Slingshot, with a reported latency of around 300 nanoseconds per hop.

“Fewer hops results in lower latency, reliability goes up, and the adaptive routing gets that much better because at the place where you’re making the routing decisions you’ve got a pretty good idea of the global state of the network because of the really low diameter and because our switches exchange information with each other about the state of congestion in the network,” says Scott.

Slingshot is said to be highly configurable in that it can accommodate different node sizes and can vary the amount of network injection bandwidth to match workloads. Cray also made Slingshot Ethernet compatible to enable interoperability with third-party storage devices and datacenters in support of today’s greater need for data exchange between platforms.

Scott is especially proud of Slingshot’s novel congestion control mechanism, claimed to dramatically reduce queuing latency in the network. Scott says this is where, in practice, most latency actually comes from and the mechanism provides strong performance isolation between workloads. He adds that this is something that’s notoriously difficult to do and no one has done it yet for HPC workloads.

“There are existing congestion control mechanisms designed for datacenters and they are particularly difficult to tune. They are fragile. They are slow to converge and they just don’t work well for HPC workloads. We’ve cracked the code and figured out how to do this with Slingshot,” says Scott. “It means you’re going to get low latency, both for average latency and tail latency (the latency that the slowest 1 percent or tenth of a percent of packets experience). In traditional HPC systems, Cray’s current systems included, one workload that causes congestion can really interfere with other workloads running on the system and cause those latencies and especially those tail latencies to go off, so Slingshot’s really going to provide performance isolation and provide low and consistent network latency.”

All Together Now

Scott adds that another key part of their data-centric design is having a really strong I/O and storage system. With Shasta, Cray takes the storage system, which typically has been external to the supercomputer, and pulls it into the supercomputer directly onto the high-speed Slingshot network, obviating the need for L net router nodes and external InfiniBand network. “We will have high-performance flash and hard drive based storage enclosures that attach directly onto the Slingshot network. This reduces complexity, reduces latency and really improves the performance, especially for fine-grained I/O,” says Scott, adding that a high-performance flash tier plus a high capacity hard-drive based tier will be unified in the same Lustre namespace with tiering between them.

“Cray is widely seen as one of only a few HPC vendors worldwide that is capable of aggressive technology innovation at the system architecture level,” said Steve Conway, Hyperion Research senior vice president of research, in support of today’s announcement. “Cray’s Shasta architecture closely matches the wish list that leading HPC users have for the exascale era, but didn’t expect to be available this soon. This is truly a breakthrough achievement.”

Another vote of confidence came from Dr. Sudip Dosanjh, director of the NERSC Center at Lawrence Berkeley National Laboratory, where a Shasta system with a mix of AMD Epyc CPUs and Nvidia GPUs will be supporting a diverse set of HPC workloads.

NERSC Edison Cray XC30 supercomputer, accepted in 2013 and scheduled to be retired on March 31, 2019. Edison was one of the first “Cascade” XC systems delivered by Cray.

“Our scientists gather massive amounts of data from scientific instruments like telescopes and detectors that our supercomputers analyze every day,” said Dosanjh. “The Shasta system’s ease of use and adaptability to modern workflows and applications will allow us to broaden access to supercomputing and enable a whole new pool of users. The ability to bring this data into the supercomputer will allow us to quickly and efficiently scale and reduce overall time to discovery.  We value being able to work closely with Cray to provide our feedback on this next generation system which is so critical to extending our Center’s innovation.”

It’s been a few years and a few technology generations since we’ve seen AMD+Nvidia together in a leadership-class system, but Cray notes that there was no technical challenge or special work required to use AMD CPUs with Nvidia GPUs. “Both are designed well to work with other components, and Cray’s programming environment is well suited for targeting them,” a company spokesperson told us.

Cray expects to share specific product information and system names next spring in anticipation of making Shasta systems commercially available by the end of 2019. Cray will be showcasing Shasta and Slingshot next month (Nov. 11-16) at the 30th anniversary of the Supercomputing (SC) conference in Dallas, Texas.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire