Cray Unveils Shasta, Lands NERSC-9 Contract

By Tiffany Trader

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We’ve known of the code-name “Shasta” since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn’t slow down its timeline for Shasta. Set for commercial launch in late 2019, the exascale-class architecture unifies the Cray supercomputer and cluster product lines and debuts a brand-new Cray-designed system interconnect, called Slingshot.

In tandem with Cray’s Shasta disclosures, the U.S. Department of Energy (DOE) is announcing that NERSC, the National Energy Research Scientific Computing Center, has chosen a Cray Shasta supercomputer for its NERSC-9 system, slated for delivery in late 2020. Named “Perlmutter” (after Nobel Prize winning astrophysicist Saul Perlmutter), the system will feature AMD Epyc processors and Nvidia GPUs offering a combined peak performance of ~100 petaflops and a sustained application performance equivalent to about 3X that of the Cray Cori (NERSC-8) supercomputer. The new contract, which includes a Cray Clusterstor storage system, is worth a reported $146 million, one of the largest in Cray’s history. (We’ll be reporting additional details of the NERSC-9 system soon.)

Cray’s Steve Scott

Shasta will be the first Cray architecture to support multiple cabinet types, a 19” air- or liquid-cooled, standard datacenter rack and a high-density, liquid-cooled rack designed to hold 64 compute blades with multiple processors per blade. Both options can scale to well over 100 cabinets, according to Cray.

Currently Cray’s product set is divided between its CS line — dating to its Appro acquisition and featuring commodity software, a third-party interconnect and a standard 19” rack — and its flagship XC line, the dense, scale-optimized, liquid-cooled rack offering that integrates its custom Aries interconnect and a custom software stack. Shasta breaks this convention and allows the user to have the Cray custom interconnect and software stack in either form factor. Shasta also emphasizes infrastructure choice, offering from one to 16 nodes per compute blade, support for x86 (Intel and AMD), Arm (Marvell), GPUs (Nvidia and AMD) in the same system, as well as system interconnects from Cray (Slingshot), Intel (Omni-Path) or Mellanox (InfiniBand). Cray also supports FPGAs and anticipates offering support for one or more of the emerging ML accelerators in the next one-to-two years.

“We designed Shasta with both extreme performance and flexibility,” comments Cray CTO Steve Scott in an interview with HPCwire. “The new system architecture is motivated by increasingly heterogeneous data-centric workloads. We’re seeing more and more customers wanting to run workflows containing simulation and analytics and AI, and we needed systems that could handle all of these simultaneously, moving away from the siloed situation of different systems optimized for different workloads.”

The new architecture has the ability to handle high processor power levels with direct liquid cooling, supporting W4-class warm water cooling (up to 45-degree Celsius water). Per cabinet cooling tops out at 250 kilowatts initially, increasing to 300 kilowatts per cabinet within the first year after launch, according to Cray.

Introducing Slingshot, Cray’s 8th Generation HPC Network

One of the biggest hardware revelations in the Shasta unveiling is a new interconnect, called Slingshot, designed to scale to exascale and beyond with support for over 250,000 end points. The heart of slingshot is a 64-port switch with 200 Gbps ports (based on 50 Gbps signalling technology), providing 12.8 Tbps bandwidth per switch. Slingshot implements the Dragonfly topology, which Cray invented in 2008. Cray reduced the network diameter from five hops in the current Cray XC generation Dragonfly topology, to three hops for Slingshot, with a reported latency of around 300 nanoseconds per hop.

“Fewer hops results in lower latency, reliability goes up, and the adaptive routing gets that much better because at the place where you’re making the routing decisions you’ve got a pretty good idea of the global state of the network because of the really low diameter and because our switches exchange information with each other about the state of congestion in the network,” says Scott.

Slingshot is said to be highly configurable in that it can accommodate different node sizes and can vary the amount of network injection bandwidth to match workloads. Cray also made Slingshot Ethernet compatible to enable interoperability with third-party storage devices and datacenters in support of today’s greater need for data exchange between platforms.

Scott is especially proud of Slingshot’s novel congestion control mechanism, claimed to dramatically reduce queuing latency in the network. Scott says this is where, in practice, most latency actually comes from and the mechanism provides strong performance isolation between workloads. He adds that this is something that’s notoriously difficult to do and no one has done it yet for HPC workloads.

“There are existing congestion control mechanisms designed for datacenters and they are particularly difficult to tune. They are fragile. They are slow to converge and they just don’t work well for HPC workloads. We’ve cracked the code and figured out how to do this with Slingshot,” says Scott. “It means you’re going to get low latency, both for average latency and tail latency (the latency that the slowest 1 percent or tenth of a percent of packets experience). In traditional HPC systems, Cray’s current systems included, one workload that causes congestion can really interfere with other workloads running on the system and cause those latencies and especially those tail latencies to go off, so Slingshot’s really going to provide performance isolation and provide low and consistent network latency.”

All Together Now

Scott adds that another key part of their data-centric design is having a really strong I/O and storage system. With Shasta, Cray takes the storage system, which typically has been external to the supercomputer, and pulls it into the supercomputer directly onto the high-speed Slingshot network, obviating the need for L net router nodes and external InfiniBand network. “We will have high-performance flash and hard drive based storage enclosures that attach directly onto the Slingshot network. This reduces complexity, reduces latency and really improves the performance, especially for fine-grained I/O,” says Scott, adding that a high-performance flash tier plus a high capacity hard-drive based tier will be unified in the same Lustre namespace with tiering between them.

“Cray is widely seen as one of only a few HPC vendors worldwide that is capable of aggressive technology innovation at the system architecture level,” said Steve Conway, Hyperion Research senior vice president of research, in support of today’s announcement. “Cray’s Shasta architecture closely matches the wish list that leading HPC users have for the exascale era, but didn’t expect to be available this soon. This is truly a breakthrough achievement.”

Another vote of confidence came from Dr. Sudip Dosanjh, director of the NERSC Center at Lawrence Berkeley National Laboratory, where a Shasta system with a mix of AMD Epyc CPUs and Nvidia GPUs will be supporting a diverse set of HPC workloads.

NERSC Edison Cray XC30 supercomputer, accepted in 2013 and scheduled to be retired on March 31, 2019. Edison was one of the first “Cascade” XC systems delivered by Cray.

“Our scientists gather massive amounts of data from scientific instruments like telescopes and detectors that our supercomputers analyze every day,” said Dosanjh. “The Shasta system’s ease of use and adaptability to modern workflows and applications will allow us to broaden access to supercomputing and enable a whole new pool of users. The ability to bring this data into the supercomputer will allow us to quickly and efficiently scale and reduce overall time to discovery.  We value being able to work closely with Cray to provide our feedback on this next generation system which is so critical to extending our Center’s innovation.”

It’s been a few years and a few technology generations since we’ve seen AMD+Nvidia together in a leadership-class system, but Cray notes that there was no technical challenge or special work required to use AMD CPUs with Nvidia GPUs. “Both are designed well to work with other components, and Cray’s programming environment is well suited for targeting them,” a company spokesperson told us.

Cray expects to share specific product information and system names next spring in anticipation of making Shasta systems commercially available by the end of 2019. Cray will be showcasing Shasta and Slingshot next month (Nov. 11-16) at the 30th anniversary of the Supercomputing (SC) conference in Dallas, Texas.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This