Cray Unveils Shasta, Lands NERSC-9 Contract

By Tiffany Trader

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We’ve known of the code-name “Shasta” since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn’t slow down its timeline for Shasta. Set for commercial launch in late 2019, the exascale-class architecture unifies the Cray supercomputer and cluster product lines and debuts a brand-new Cray-designed system interconnect, called Slingshot.

In tandem with Cray’s Shasta disclosures, the U.S. Department of Energy (DOE) is announcing that NERSC, the National Energy Research Scientific Computing Center, has chosen a Cray Shasta supercomputer for its NERSC-9 system, slated for delivery in late 2020. Named “Perlmutter” (after Nobel Prize winning astrophysicist Saul Perlmutter), the system will feature AMD Epyc processors and Nvidia GPUs offering a combined peak performance of ~100 petaflops and a sustained application performance equivalent to about 3X that of the Cray Cori (NERSC-8) supercomputer. The new contract, which includes a Cray Clusterstor storage system, is worth a reported $146 million, one of the largest in Cray’s history. (We’ll be reporting additional details of the NERSC-9 system soon.)

Cray’s Steve Scott

Shasta will be the first Cray architecture to support multiple cabinet types, a 19” air- or liquid-cooled, standard datacenter rack and a high-density, liquid-cooled rack designed to hold 64 compute blades with multiple processors per blade. Both options can scale to well over 100 cabinets, according to Cray.

Currently Cray’s product set is divided between its CS line — dating to its Appro acquisition and featuring commodity software, a third-party interconnect and a standard 19” rack — and its flagship XC line, the dense, scale-optimized, liquid-cooled rack offering that integrates its custom Aries interconnect and a custom software stack. Shasta breaks this convention and allows the user to have the Cray custom interconnect and software stack in either form factor. Shasta also emphasizes infrastructure choice, offering from one to 16 nodes per compute blade, support for x86 (Intel and AMD), Arm (Marvell), GPUs (Nvidia and AMD) in the same system, as well as system interconnects from Cray (Slingshot), Intel (Omni-Path) or Mellanox (InfiniBand). Cray also supports FPGAs and anticipates offering support for one or more of the emerging ML accelerators in the next one-to-two years.

“We designed Shasta with both extreme performance and flexibility,” comments Cray CTO Steve Scott in an interview with HPCwire. “The new system architecture is motivated by increasingly heterogeneous data-centric workloads. We’re seeing more and more customers wanting to run workflows containing simulation and analytics and AI, and we needed systems that could handle all of these simultaneously, moving away from the siloed situation of different systems optimized for different workloads.”

The new architecture has the ability to handle high processor power levels with direct liquid cooling, supporting W4-class warm water cooling (up to 45-degree Celsius water). Per cabinet cooling tops out at 250 kilowatts initially, increasing to 300 kilowatts per cabinet within the first year after launch, according to Cray.

Introducing Slingshot, Cray’s 8th Generation HPC Network

One of the biggest hardware revelations in the Shasta unveiling is a new interconnect, called Slingshot, designed to scale to exascale and beyond with support for over 250,000 end points. The heart of slingshot is a 64-port switch with 200 Gbps ports (based on 50 Gbps signalling technology), providing 12.8 Tbps bandwidth per switch. Slingshot implements the Dragonfly topology, which Cray invented in 2008. Cray reduced the network diameter from five hops in the current Cray XC generation Dragonfly topology, to three hops for Slingshot, with a reported latency of around 300 nanoseconds per hop.

“Fewer hops results in lower latency, reliability goes up, and the adaptive routing gets that much better because at the place where you’re making the routing decisions you’ve got a pretty good idea of the global state of the network because of the really low diameter and because our switches exchange information with each other about the state of congestion in the network,” says Scott.

Slingshot is said to be highly configurable in that it can accommodate different node sizes and can vary the amount of network injection bandwidth to match workloads. Cray also made Slingshot Ethernet compatible to enable interoperability with third-party storage devices and datacenters in support of today’s greater need for data exchange between platforms.

Scott is especially proud of Slingshot’s novel congestion control mechanism, claimed to dramatically reduce queuing latency in the network. Scott says this is where, in practice, most latency actually comes from and the mechanism provides strong performance isolation between workloads. He adds that this is something that’s notoriously difficult to do and no one has done it yet for HPC workloads.

“There are existing congestion control mechanisms designed for datacenters and they are particularly difficult to tune. They are fragile. They are slow to converge and they just don’t work well for HPC workloads. We’ve cracked the code and figured out how to do this with Slingshot,” says Scott. “It means you’re going to get low latency, both for average latency and tail latency (the latency that the slowest 1 percent or tenth of a percent of packets experience). In traditional HPC systems, Cray’s current systems included, one workload that causes congestion can really interfere with other workloads running on the system and cause those latencies and especially those tail latencies to go off, so Slingshot’s really going to provide performance isolation and provide low and consistent network latency.”

All Together Now

Scott adds that another key part of their data-centric design is having a really strong I/O and storage system. With Shasta, Cray takes the storage system, which typically has been external to the supercomputer, and pulls it into the supercomputer directly onto the high-speed Slingshot network, obviating the need for L net router nodes and external InfiniBand network. “We will have high-performance flash and hard drive based storage enclosures that attach directly onto the Slingshot network. This reduces complexity, reduces latency and really improves the performance, especially for fine-grained I/O,” says Scott, adding that a high-performance flash tier plus a high capacity hard-drive based tier will be unified in the same Lustre namespace with tiering between them.

“Cray is widely seen as one of only a few HPC vendors worldwide that is capable of aggressive technology innovation at the system architecture level,” said Steve Conway, Hyperion Research senior vice president of research, in support of today’s announcement. “Cray’s Shasta architecture closely matches the wish list that leading HPC users have for the exascale era, but didn’t expect to be available this soon. This is truly a breakthrough achievement.”

Another vote of confidence came from Dr. Sudip Dosanjh, director of the NERSC Center at Lawrence Berkeley National Laboratory, where a Shasta system with a mix of AMD Epyc CPUs and Nvidia GPUs will be supporting a diverse set of HPC workloads.

NERSC Edison Cray XC30 supercomputer, accepted in 2013 and scheduled to be retired on March 31, 2019. Edison was one of the first “Cascade” XC systems delivered by Cray.

“Our scientists gather massive amounts of data from scientific instruments like telescopes and detectors that our supercomputers analyze every day,” said Dosanjh. “The Shasta system’s ease of use and adaptability to modern workflows and applications will allow us to broaden access to supercomputing and enable a whole new pool of users. The ability to bring this data into the supercomputer will allow us to quickly and efficiently scale and reduce overall time to discovery.  We value being able to work closely with Cray to provide our feedback on this next generation system which is so critical to extending our Center’s innovation.”

It’s been a few years and a few technology generations since we’ve seen AMD+Nvidia together in a leadership-class system, but Cray notes that there was no technical challenge or special work required to use AMD CPUs with Nvidia GPUs. “Both are designed well to work with other components, and Cray’s programming environment is well suited for targeting them,” a company spokesperson told us.

Cray expects to share specific product information and system names next spring in anticipation of making Shasta systems commercially available by the end of 2019. Cray will be showcasing Shasta and Slingshot next month (Nov. 11-16) at the 30th anniversary of the Supercomputing (SC) conference in Dallas, Texas.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterized as transforming data into insights – which is exactly wh Read more…

By James Reinders

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This