Democratization of HPC Part 4: Deep Learning for Fluid Flow Prediction in the Cloud

By Jannik Zuern, Wolfgang Gentzsch, Markus Stoll, Stefan Suwelack, and Joseph Pareti

November 1, 2018

This is the fourth and final article demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #211 on Deep Learning for Fluid Flow Prediction in the Advania Data Centers Cloud, for educational purposes, for our wider engineering simulation community. This project is another demonstration of the trend toward easy-to-use application software (in this case OpenFOAM) and the seamless access to HPC cloud resources.


This UberCloud project #211 has been collaboratively performed by Jannik Zuern, master student at the Karlsruhe Institute of Technology (KIT) supported by Renumics GmbH for Automated Computer Aided Engineering in Germany, and cloud resource provider Advania Data Centers in Iceland, with sponsorship from HPE and Intel. OpenFOAM and Renumics AI tools have been packaged into an UberCloud HPC software container.

Solving fluid flow problems using computational fluid dynamics (CFD) is demanding both in terms of computing power and simulation time. Artificial neural networks (ANN) can learn complex dependencies between high-dimensional variables. This ability is exploited in a data-driven approach to CFD that is presented in this case study. An ANN is applied in predicting the fluid flow given only the shape of the object that is to be simulated. The goal of the approach is to apply an ANN to solve fluid flow problems to significantly decrease time-to-solution while preserving much of the accuracy of a traditional CFD solver. Creating a large number of simulation samples is paramount to let the neural network learn the dependencies between simulated design and the flow field around it.

This project between Renumics in Karlsruhe and UberCloud in Sunnyvale was therefore established to explore the benefits of additional cloud computing resources on Advania Data Centers that can be used to create a large amount of simulation samples in parallel in a fraction of the time a desktop computer would need to create them. In this project, we wanted to explore whether the overall accuracy of the neural network can be improved the more samples are being created in the UberCloud HPC/AI container based on Docker Community Edition and OpenFOAM CFD software and then used during the training of the neural network.

Workflow Overview

In order to create the simulation samples automatically, a comprehensive four-step Deep Learning workflow was established, as shown in Figure 1.

Figure 1: Deep Learning workflow

As a first step, random two-dimensional shapes are created. These shapes have to be diverse enough to let the neural network learn the dependencies between different kinds of shapes and their respective surrounding flow fields.

In the second step, the shapes are meshed and added to an OpenFOAM simulation template (Fig. 2).

In the third step, the simulation results are post-processed using the open-source visualization tool ParaView. The flow-fields are resampled on a rectangular regular grid to simplify the information processing by the neural net.

In the fourth and final step, both the simulated design and the flow fields are fed into the input queue of the neural network. After training, the neural network is able to infer a flow field merely from seeing the to-be-simulated design.

Figure 2: Simulation setup. The flow enters the simulation domain through the inlet, flows around the obstacle and leaves the simulation domain through the outlet

The HPC hardware of the Advania Data Centers compute nodes hosting the UberCloud container consisted of 2 x 16 core compute nodes with Intel Xeon CPU E5-2683 v4 @ 2.10 GHz and 250 GB memory per node, while the user’s desktop just had a 2 x 6 core Intel i7-5820K CPU @ 3.30 GHz, and GeForce GTX 1080 (8GB GDDR5X memory) GPU card with 32 GB memory.

Training Results

As a first step, we compared the time it takes to create the samples on the desktop workstation computer with the time it takes to create the same number of samples on UberCloud/Advania. On the desktop computer it took 13h 10min to create these 10,000 samples. In the UberCloud OpenFOAM container in the Advania Data Centers Cloud, it took about 2h 4min to create 10,000 samples, which means that a speedup of 6.37 could be achieved using the UberCloud container.

Figure 3: Performance and speedup of flow simulations with neural network prediction

A total of 70,000 samples were created. We compared the losses and accuracies of the neural network for different training set sizes. In order to determine the loss and the accuracy of the neural network, we first defined “loss of the neural network prediction.” This measure describes the difference between the prediction of the neural network and the fully simulated results. A loss of 0.0 for all samples would mean that every flow velocity field in the dataset is predicted perfectly. Similarly, the level of accuracy that the neural network achieves, had to be described. For details about the ‘loss’ and the ‘level of accuracy’ see the complete case study.

The generated samples are divided into the training and validation datasets. The training- and validation loss for different numbers of training samples was evaluated. The neural net was trained three times from scratch with 1,000, 10,000, and 70,000 training samples respectively. Figure 4 shows the loss after 50,000 training steps:

Figure 4: Loss after 50,000 training steps

The more different samples the neural network processes during the training process the better and faster it is able to infer a flow velocity field from the shape of the simulated object suspended in the fluid. Figure 5 illustrates the difference between the ground truth flow field (left image) and the predicted flow field (right image) for one exemplary simulation sample after 300,000 training steps. The arrow direction indicates the flow direction and the arrow color indicates the flow velocity. Visually, no difference between the two flow fields can be made out.

Figure 5: Exemplary simulated flow field (left image) and predicted flow field (right image) 

Conclusion

We were able to prove a mantra amongst machine learning engineers: The more data the better. We showed that the training of the neural network is substantially faster using a large dataset of samples compared to smaller datasets of samples. Additionally, the proposed metrics for measuring the accuracies of the neural network predictions exhibited higher values for the larger numbers of samples. The overhead of creating high volumes of additional samples can be effectively compensated by the high-performance containerized (based on Docker) computing node provided by UberCloud on the Advania Data Centers Cloud. A speed-up of more than 6 compared to a state-of-the-art desktop workstation allows creating the tens of thousands of samples needed for the neural network training process in a matter of hours instead of days.

In order to train more complex models (e.g., for transient 3D flow models) much more training data will be required. Thus, software platforms for training data generation and management as well as flexible compute infrastructure will become increasingly important.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Prize, of course, comes with an award of $10,000 courtesy of H Read more…

Q&A with ORNL’s Bronson Messer, an HPCwire Person to Watch in 2022

August 12, 2022

HPCwire presents our interview with Bronson Messer, distinguished scientist and director of Science at the Oak Ridge Leadership Computing Facility (OLCF), ORNL, and an HPCwire 2022 Person to Watch. Messer recaps ORNL's journey to exascale and sheds light on how all the pieces line up to support the all-important science. Also covered are the role... Read more…

TACC Simulations Probe the First Days of Stars, Black Holes

August 12, 2022

The stunning images produced by the James Webb Space Telescope and recent supercomputer-enabled black hole imaging efforts have brought the early days of the universe quite literally into sharp focus. Researchers from th Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Argonne Deploys Polaris Supercomputer for Science in Advance of Aurora

August 9, 2022

Argonne National Laboratory has made its newest supercomputer, Polaris, available for scientific research. The system, which ranked 14th on the most recent Top500 list, is serving as a testbed for the exascale Aurora system slated for delivery in the coming months. The HPE-built Polaris system (pictured in the header) consists of 560 nodes... Read more…

AWS Solution Channel

Shutterstock 1519171757

Running large-scale CFD fire simulations on AWS for Amazon.com

This post was contributed by Matt Broadfoot, Senior Fire Strategy Manager at Amazon Design and Construction, and Antonio Cennamo ProServe Customer Practice Manager, Colin Bridger Principal HPC GTM Specialist, Grigorios Pikoulas ProServe Strategic Program Leader, Neil Ashton Principal, Computational Engineering Product Strategy, Roberto Medar, ProServe HPC Consultant, Taiwo Abioye ProServe Security Consultant, Talib Mahouari ProServe Engagement Manager at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1689646429

Gain a Competitive Edge using Cloud-Based, GPU-Accelerated AI KYC Recommender Systems

Financial services organizations face increased competition for customers from technologies such as FinTechs, mobile banking applications, and online payment systems. To meet this challenge, it is important for organizations to have a deep understanding of their customers. Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed and lauded the ambitious piece of legislation, which over the course of the legislative process broadened to include hundreds of billions in additional science and technology spending. He was flanked by Speaker... Read more…

Q&A with ORNL’s Bronson Messer, an HPCwire Person to Watch in 2022

August 12, 2022

HPCwire presents our interview with Bronson Messer, distinguished scientist and director of Science at the Oak Ridge Leadership Computing Facility (OLCF), ORNL, and an HPCwire 2022 Person to Watch. Messer recaps ORNL's journey to exascale and sheds light on how all the pieces line up to support the all-important science. Also covered are the role... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Argonne Deploys Polaris Supercomputer for Science in Advance of Aurora

August 9, 2022

Argonne National Laboratory has made its newest supercomputer, Polaris, available for scientific research. The system, which ranked 14th on the most recent Top500 list, is serving as a testbed for the exascale Aurora system slated for delivery in the coming months. The HPE-built Polaris system (pictured in the header) consists of 560 nodes... Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed and lauded the ambitious piece of legislation, which over the course of the legislative process broadened to include hundreds of billions in additional science and technology spending. He was flanked by Speaker... Read more…

12 Midwestern Universities Team to Boost Semiconductor Supply Chain

August 8, 2022

The combined stressors of Covid-19 and the invasion of Ukraine have sent every major nation scrambling to reinforce its mission-critical supply chains – including and in particular the semiconductor supply chain. In the U.S. – which, like much of the world, relies on Asia for its semiconductors – those efforts have taken shape through the recently... Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York Stock Exchange. It is now trading under two ticker symbols – QBTS and QBTS WS (warrant shares), respectively. Welcome to the public... Read more…

Supercomputer Models Explosives Critical for Nuclear Weapons

August 6, 2022

Lawrence Livermore National Laboratory (LLNL) is one of the laboratories that operates under the auspices of the National Nuclear Security Administration (NNSA), which manages the United States’ stockpile of nuclear weapons. Amid major efforts to modernize that stockpile, LLNL has announced that researchers from its own Energetic Materials Center... Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking – which serves as the EU’s concerted supercomputing play – announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

AMD Lines Up Alternate Chips as It Eyes a ‘Post-exaflops’ Future

June 10, 2022

Close to a decade ago, AMD was in turmoil. The company was playing second fiddle to Intel in PCs and datacenters, and its road to profitability hinged mostly on Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire