Democratization of HPC Part 4: Deep Learning for Fluid Flow Prediction in the Cloud

By Jannik Zuern, Wolfgang Gentzsch, Markus Stoll, Stefan Suwelack, and Joseph Pareti

November 1, 2018

This is the fourth and final article demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #211 on Deep Learning for Fluid Flow Prediction in the Advania Data Centers Cloud, for educational purposes, for our wider engineering simulation community. This project is another demonstration of the trend toward easy-to-use application software (in this case OpenFOAM) and the seamless access to HPC cloud resources.


This UberCloud project #211 has been collaboratively performed by Jannik Zuern, master student at the Karlsruhe Institute of Technology (KIT) supported by Renumics GmbH for Automated Computer Aided Engineering in Germany, and cloud resource provider Advania Data Centers in Iceland, with sponsorship from HPE and Intel. OpenFOAM and Renumics AI tools have been packaged into an UberCloud HPC software container.

Solving fluid flow problems using computational fluid dynamics (CFD) is demanding both in terms of computing power and simulation time. Artificial neural networks (ANN) can learn complex dependencies between high-dimensional variables. This ability is exploited in a data-driven approach to CFD that is presented in this case study. An ANN is applied in predicting the fluid flow given only the shape of the object that is to be simulated. The goal of the approach is to apply an ANN to solve fluid flow problems to significantly decrease time-to-solution while preserving much of the accuracy of a traditional CFD solver. Creating a large number of simulation samples is paramount to let the neural network learn the dependencies between simulated design and the flow field around it.

This project between Renumics in Karlsruhe and UberCloud in Sunnyvale was therefore established to explore the benefits of additional cloud computing resources on Advania Data Centers that can be used to create a large amount of simulation samples in parallel in a fraction of the time a desktop computer would need to create them. In this project, we wanted to explore whether the overall accuracy of the neural network can be improved the more samples are being created in the UberCloud HPC/AI container based on Docker Community Edition and OpenFOAM CFD software and then used during the training of the neural network.

Workflow Overview

In order to create the simulation samples automatically, a comprehensive four-step Deep Learning workflow was established, as shown in Figure 1.

Figure 1: Deep Learning workflow

As a first step, random two-dimensional shapes are created. These shapes have to be diverse enough to let the neural network learn the dependencies between different kinds of shapes and their respective surrounding flow fields.

In the second step, the shapes are meshed and added to an OpenFOAM simulation template (Fig. 2).

In the third step, the simulation results are post-processed using the open-source visualization tool ParaView. The flow-fields are resampled on a rectangular regular grid to simplify the information processing by the neural net.

In the fourth and final step, both the simulated design and the flow fields are fed into the input queue of the neural network. After training, the neural network is able to infer a flow field merely from seeing the to-be-simulated design.

Figure 2: Simulation setup. The flow enters the simulation domain through the inlet, flows around the obstacle and leaves the simulation domain through the outlet

The HPC hardware of the Advania Data Centers compute nodes hosting the UberCloud container consisted of 2 x 16 core compute nodes with Intel Xeon CPU E5-2683 v4 @ 2.10 GHz and 250 GB memory per node, while the user’s desktop just had a 2 x 6 core Intel i7-5820K CPU @ 3.30 GHz, and GeForce GTX 1080 (8GB GDDR5X memory) GPU card with 32 GB memory.

Training Results

As a first step, we compared the time it takes to create the samples on the desktop workstation computer with the time it takes to create the same number of samples on UberCloud/Advania. On the desktop computer it took 13h 10min to create these 10,000 samples. In the UberCloud OpenFOAM container in the Advania Data Centers Cloud, it took about 2h 4min to create 10,000 samples, which means that a speedup of 6.37 could be achieved using the UberCloud container.

Figure 3: Performance and speedup of flow simulations with neural network prediction

A total of 70,000 samples were created. We compared the losses and accuracies of the neural network for different training set sizes. In order to determine the loss and the accuracy of the neural network, we first defined “loss of the neural network prediction.” This measure describes the difference between the prediction of the neural network and the fully simulated results. A loss of 0.0 for all samples would mean that every flow velocity field in the dataset is predicted perfectly. Similarly, the level of accuracy that the neural network achieves, had to be described. For details about the ‘loss’ and the ‘level of accuracy’ see the complete case study.

The generated samples are divided into the training and validation datasets. The training- and validation loss for different numbers of training samples was evaluated. The neural net was trained three times from scratch with 1,000, 10,000, and 70,000 training samples respectively. Figure 4 shows the loss after 50,000 training steps:

Figure 4: Loss after 50,000 training steps

The more different samples the neural network processes during the training process the better and faster it is able to infer a flow velocity field from the shape of the simulated object suspended in the fluid. Figure 5 illustrates the difference between the ground truth flow field (left image) and the predicted flow field (right image) for one exemplary simulation sample after 300,000 training steps. The arrow direction indicates the flow direction and the arrow color indicates the flow velocity. Visually, no difference between the two flow fields can be made out.

Figure 5: Exemplary simulated flow field (left image) and predicted flow field (right image) 

Conclusion

We were able to prove a mantra amongst machine learning engineers: The more data the better. We showed that the training of the neural network is substantially faster using a large dataset of samples compared to smaller datasets of samples. Additionally, the proposed metrics for measuring the accuracies of the neural network predictions exhibited higher values for the larger numbers of samples. The overhead of creating high volumes of additional samples can be effectively compensated by the high-performance containerized (based on Docker) computing node provided by UberCloud on the Advania Data Centers Cloud. A speed-up of more than 6 compared to a state-of-the-art desktop workstation allows creating the tens of thousands of samples needed for the neural network training process in a matter of hours instead of days.

In order to train more complex models (e.g., for transient 3D flow models) much more training data will be required. Thus, software platforms for training data generation and management as well as flexible compute infrastructure will become increasingly important.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

U.S. CTO Michael Kratsios Adds DoD Research & Engineering Title

July 13, 2020

Michael Kratsios, the U.S. Chief Technology Officer, has been appointed acting Undersecretary of Defense for research and engineering. He replaces Mike Griffin, who along with his deputy Lis Porter, stepped down last wee Read more…

By John Russell

Supercomputer Research Reveals Star Cluster Born Outside Our Galaxy

July 11, 2020

The Milky Way is our galactic home, containing our solar system and continuing into a giant band of densely packed stars that stretches across clear night skies around the world – but, it turns out, not all of those st Read more…

By Oliver Peckham

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprised of Intel Xeon processors and Nvidia A100 GPUs, and featuri Read more…

By Tiffany Trader

Xilinx Announces First Adaptive Computing Challenge

July 9, 2020

A new contest is challenging the computing world. Xilinx has announced the first Xilinx Adaptive Computing Challenge, a competition that will task developers and startups with finding creative workload acceleration solutions. Xilinx is running the Adaptive Computing Challenge in partnership with Hackster.io, a developing community... Read more…

By Staff report

Reviving Moore’s Law? LBNL Researchers See Promise in Heterostructure Oxides

July 9, 2020

The reality of Moore’s law’s decline is no longer doubted for good empirical reasons. That said, never say never. Recent work by Lawrence Berkeley National Laboratory researchers suggests heterostructure oxides may b Read more…

By John Russell

AWS Solution Channel

Best Practices for Running Computational Fluid Dynamics (CFD) Workloads on AWS

The scalable nature and variable demand of CFD workloads makes them well-suited for a cloud computing environment. Many of the AWS instance types, such as the compute family instance types, are designed to include support for this type of workload.  Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: 1) Industries of the Future (IotF), chaired be Dario Gil (d Read more…

By John Russell

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This