Democratization of HPC Part 4: Deep Learning for Fluid Flow Prediction in the Cloud

By Jannik Zuern, Wolfgang Gentzsch, Markus Stoll, Stefan Suwelack, and Joseph Pareti

November 1, 2018

This is the fourth and final article demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #211 on Deep Learning for Fluid Flow Prediction in the Advania Data Centers Cloud, for educational purposes, for our wider engineering simulation community. This project is another demonstration of the trend toward easy-to-use application software (in this case OpenFOAM) and the seamless access to HPC cloud resources.


This UberCloud project #211 has been collaboratively performed by Jannik Zuern, master student at the Karlsruhe Institute of Technology (KIT) supported by Renumics GmbH for Automated Computer Aided Engineering in Germany, and cloud resource provider Advania Data Centers in Iceland, with sponsorship from HPE and Intel. OpenFOAM and Renumics AI tools have been packaged into an UberCloud HPC software container.

Solving fluid flow problems using computational fluid dynamics (CFD) is demanding both in terms of computing power and simulation time. Artificial neural networks (ANN) can learn complex dependencies between high-dimensional variables. This ability is exploited in a data-driven approach to CFD that is presented in this case study. An ANN is applied in predicting the fluid flow given only the shape of the object that is to be simulated. The goal of the approach is to apply an ANN to solve fluid flow problems to significantly decrease time-to-solution while preserving much of the accuracy of a traditional CFD solver. Creating a large number of simulation samples is paramount to let the neural network learn the dependencies between simulated design and the flow field around it.

This project between Renumics in Karlsruhe and UberCloud in Sunnyvale was therefore established to explore the benefits of additional cloud computing resources on Advania Data Centers that can be used to create a large amount of simulation samples in parallel in a fraction of the time a desktop computer would need to create them. In this project, we wanted to explore whether the overall accuracy of the neural network can be improved the more samples are being created in the UberCloud HPC/AI container based on Docker Community Edition and OpenFOAM CFD software and then used during the training of the neural network.

Workflow Overview

In order to create the simulation samples automatically, a comprehensive four-step Deep Learning workflow was established, as shown in Figure 1.

Figure 1: Deep Learning workflow

As a first step, random two-dimensional shapes are created. These shapes have to be diverse enough to let the neural network learn the dependencies between different kinds of shapes and their respective surrounding flow fields.

In the second step, the shapes are meshed and added to an OpenFOAM simulation template (Fig. 2).

In the third step, the simulation results are post-processed using the open-source visualization tool ParaView. The flow-fields are resampled on a rectangular regular grid to simplify the information processing by the neural net.

In the fourth and final step, both the simulated design and the flow fields are fed into the input queue of the neural network. After training, the neural network is able to infer a flow field merely from seeing the to-be-simulated design.

Figure 2: Simulation setup. The flow enters the simulation domain through the inlet, flows around the obstacle and leaves the simulation domain through the outlet

The HPC hardware of the Advania Data Centers compute nodes hosting the UberCloud container consisted of 2 x 16 core compute nodes with Intel Xeon CPU E5-2683 v4 @ 2.10 GHz and 250 GB memory per node, while the user’s desktop just had a 2 x 6 core Intel i7-5820K CPU @ 3.30 GHz, and GeForce GTX 1080 (8GB GDDR5X memory) GPU card with 32 GB memory.

Training Results

As a first step, we compared the time it takes to create the samples on the desktop workstation computer with the time it takes to create the same number of samples on UberCloud/Advania. On the desktop computer it took 13h 10min to create these 10,000 samples. In the UberCloud OpenFOAM container in the Advania Data Centers Cloud, it took about 2h 4min to create 10,000 samples, which means that a speedup of 6.37 could be achieved using the UberCloud container.

Figure 3: Performance and speedup of flow simulations with neural network prediction

A total of 70,000 samples were created. We compared the losses and accuracies of the neural network for different training set sizes. In order to determine the loss and the accuracy of the neural network, we first defined “loss of the neural network prediction.” This measure describes the difference between the prediction of the neural network and the fully simulated results. A loss of 0.0 for all samples would mean that every flow velocity field in the dataset is predicted perfectly. Similarly, the level of accuracy that the neural network achieves, had to be described. For details about the ‘loss’ and the ‘level of accuracy’ see the complete case study.

The generated samples are divided into the training and validation datasets. The training- and validation loss for different numbers of training samples was evaluated. The neural net was trained three times from scratch with 1,000, 10,000, and 70,000 training samples respectively. Figure 4 shows the loss after 50,000 training steps:

Figure 4: Loss after 50,000 training steps

The more different samples the neural network processes during the training process the better and faster it is able to infer a flow velocity field from the shape of the simulated object suspended in the fluid. Figure 5 illustrates the difference between the ground truth flow field (left image) and the predicted flow field (right image) for one exemplary simulation sample after 300,000 training steps. The arrow direction indicates the flow direction and the arrow color indicates the flow velocity. Visually, no difference between the two flow fields can be made out.

Figure 5: Exemplary simulated flow field (left image) and predicted flow field (right image) 

Conclusion

We were able to prove a mantra amongst machine learning engineers: The more data the better. We showed that the training of the neural network is substantially faster using a large dataset of samples compared to smaller datasets of samples. Additionally, the proposed metrics for measuring the accuracies of the neural network predictions exhibited higher values for the larger numbers of samples. The overhead of creating high volumes of additional samples can be effectively compensated by the high-performance containerized (based on Docker) computing node provided by UberCloud on the Advania Data Centers Cloud. A speed-up of more than 6 compared to a state-of-the-art desktop workstation allows creating the tens of thousands of samples needed for the neural network training process in a matter of hours instead of days.

In order to train more complex models (e.g., for transient 3D flow models) much more training data will be required. Thus, software platforms for training data generation and management as well as flexible compute infrastructure will become increasingly important.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Simulating Car Crashes with Supercomputers – and Lego

October 18, 2019

It’s an experiment many of us have carried out at home: crashing two Lego creations into each other, bricks flying everywhere. But for the researchers at the General German Automobile Club (ADAC) – which is comparabl Read more…

By Oliver Peckham

NASA Uses Deep Learning to Monitor Solar Weather

October 17, 2019

Solar flares may be best-known as sci-fi MacGuffins, but those flares – and other space weather – can have serious impacts on not only spacecraft and satellites, but also on Earth-based systems such as radio communic Read more…

By Oliver Peckham

Federated Learning Applied to Cancer Research

October 17, 2019

The ability to share and analyze data while protecting patient privacy is giving medical researchers a new tool in their efforts to use what one vendor calls “federated learning” to train models based on diverse data Read more…

By George Leopold

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departure from past practice, the NSB has divided the 2020 S&E Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

How Do We Power the New Industrial Revolution?

[Attend the IBM LSF, HPC & AI User Group Meeting at SC19 in Denver on November 19!]

Almost everyone is talking about artificial intelligence (AI). Read more…

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departu Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This