Revisiting the 2008 Exascale Computing Study at SC18

By Scott Gibson

November 29, 2018

Jeffrey Vetter, Distinguished R&D Staff Member at Oak Ridge National Laboratory, led the SC18 Birds of a Feather session “Revisiting the 2008 ExaScale Computing Study and Venturing Predictions for 2028.”

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the then-emerging petascale systems at a system power of no more than 20 MW. On November 14 at the SC18 supercomputing conference in Dallas, some of the original contributors to the report participated in a Birds of a Feather session in which they reflected on the document, sharing what they deemed to be its hits and misses and making predictions for 2028.

Session leader, Jeffrey Vetter of Oak Ridge National Laboratory, said the 2008 report, titled “Exascale Computing Study: Technology Challenges in Achieving Exascale Systems,” has been cited more than 1,000 times and that many people look to it to understand what research agendas they should undertake and to consider what are the most salient challenges to be faced in high-performance computing.

The study was sponsored by the Defense Advanced Research Projects Agency (DARPA) Information Processing Techniques Office (IPTO) with Bill Harrod as program manager. The report represents the ideas of people from universities, industry, and research labs collected during periodic meetings conducted during the course of more than a year.

Harrod, who is now program manager for the Intelligence Advanced Research Projects Activity (IARPA), told the BoF audience that consideration of petascale system specifications as they existed at the time informed the study group members’ assumptions about exascale. Petascale systems operated at about 13 MW with several hundred cabinets. Thus, the anticipated parameters for exascale were 1018 operations/second at 20 MW and with fewer than 500 cabinets. The pivotal big-picture questions, Harrod said, were whether an exascale system was needed and could it be used for scientific discovery and other practical purposes.

Two other studies, on software and resiliency, respectively, followed the study upon which the 2008 report was based. The resounding, overarching comment concerning the findings of the three studies, Harrod said, was that co-design would be essential. He added that although the co-design concept was not revolutionary, it was determined to be critical for ensuring hardware design would correspond properly with the intended uses for the system, and it became an integral aspect of the US Department of Energy’s Exascale Computing Initiative (ECI) and Exascale Computing Project (ECP).

Peter Kogge of the University of Notre Dame led the Exascale Computing study and served as editor of the 2008 report. In his presentation for the BoF, he outlined four key challenges that surfaced from the study: energy and power, memory, concurrency, and resiliency. He also summarized the 2008 computing environment and what it was anticipated to look like by 2015, noting that the study team did not focus on application needs and the Roofline model. For matrix multiply like the High-Performance Linpack (HPL) benchmark, he said, having a large enough cache would supersede concerns about memory speed; and to reach a peak of 1 exaflops, the goal was to hit 20 pJ/flop.

The team assembled what Kogge referred to as an aggressive strawman with an architecture that was largely influenced by study contributor Bill Dally (then with Stanford University, now with Nvidia), who participated in the BoF. The architecture was characterized by multicore, no coherency, and shared global address space. Reaching the 1 exaflops peak meant 68 MW power usage from 583 racks. Relative to programming, about 1 billion threads needed to be maintained. A wire interconnect was assumed.

Kogge provided details from the report on the aggressive strawman system, which he said he considered to be “remarkably prescient” with respect to what ultimately materialized in the evolution toward exascale.

A 2015 paper for the International Supercomputing Conference (ISC) by Kogge titled “Updating Energy Model for Future Exascale Systems” examined an update of the models that the Exascale Computing study team had built to project performance for only the heavyweight (Xeon chips) sockets. The paper received a Gauss Award.

The study group’s final analysis showed that an exaflops could be reached by 2020, but with a peak of 180 MW to 430 MW.

The Study Contributors’ Assessments of Hits and Misses

Bill Harrod

At the inception of the DARPA studies, the target year for reaching exascale was 2015, but based on the results of the software study it was adjusted to 2018. Today, projections are focused on the 2021–2023 time frame. Harrod said that although the projections have evolved, the studies paved the way for DARPA’s Ubiquitous High-Performance Computing (UHPC) Exascale Projects and laid the foundation for DOE’s ECI and ECP. They have, he added, greatly enhanced the environment for exascale development.

In terms of hits and misses, the importance of co-design has played out at DOE and many other places, including the FastForward and PathForward programs, Harrod said. As a key miss of the study, he highlighted the fact that it did not foresee the impact of artificial intelligence (AI).

Peter Kogge

The study group’s approach in focusing on the heavyweight systems was dead-on through 2015, and the aggressive strawman they developed greatly resembles today’s GPU, Kogge said. In addition, he said the study group was right to point out that some form of memory stacking would be necessary, and that interconnects, at least locally within racks, would still largely be copper. Among the misses, he highlighted the heterogeneous systems and the SIMT threading model, which constitutes what is done with GPUs today.

Keren Bergman (Columbia University)

Bergman said that as someone whose background is in optical networks, she considered the close examination of the energy consumption of the interconnects in this study to be enlightening. With respect to the study’s hits, she opined that the deep discussions captured the growing challenge of data movement. However, in her view, one of the study’s sizable misses was the cost associated with manufacturability. She said substantial innovations would be required to integrate photonics into chips and remedy one of the last real bottlenecks.

Dean Klein (Micron/now retired)

Klein, who was vice president of memory system development at Micron at the time of the study and today in retirement mentors and motivates engineering students, highlighted as a hit the study group’s awareness that the energy of memory subsystems would drive compromises in the memory in systems, and as a miss the idea of NAND flash playing a role in supercomputing.

Bill Dally

The prescience of the study’s aggressive silicon strawman made it a hit, Dally said. Conversely, he viewed as shortcomings the paucity of capable networks due to funding, failure to anticipate AI, and an overly conservative approach in addressing software.

Exascale Study Contributors’ Predictions for 2028

The belief that complementary metal-oxide-semiconductor (CMOS) technology for constructing integrated circuits would remain predominant was a recurring notion, as the BoF contributors offered diverse predictions for 2028 based on the perspectives of their areas of expertise.

The contributors also responded to comments and questions from the audience.

Scott Gibson is a science writer and communications specialist with Oak Ridge National Laboratory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, some of the apps, like SWIFT and OpenFOAM, really pushed the st Read more…

By Dan Olds

Portugal Launches Its First Supercomputer

July 12, 2019

Portugal has officially inaugurated its first-ever supercomputer. The unassumingly named “Bob” supercomputer is housed in the Minho Advanced Computer Center (MACC) at the University of Minho.  Bob was announced i Read more…

By Oliver Peckham

What’s New in HPC Research: Traffic Simulation, Performance Variations, Scheduling & More

July 11, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

How AI Powers Up Data Management and Analytics

Companies are making more decisions based on data. However, the ability to intelligently process the growing volume of data is a bottleneck to extracting actionable insights. Read more…

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered servers for AI workloads, has expanded the program beyond th Read more…

By Doug Black

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

ISC19 Cluster Competition: HPCC Deep Dive

July 7, 2019

The biggest benchmark the student warriors tackled during the ISC19 Student Cluster Competition was the colossal HPC Challenge. This is a collection of benchmar Read more…

By Dan Olds

OLCF Bids Farewell to Its Titan Supercomputer

July 4, 2019

After seven years of faithful service, and a long reign as the United States' fastest supercomputer, the Cray XK7-based Titan supercomputer at the Oak Ridge Lea Read more…

By Staff report

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This