Revisiting the 2008 Exascale Computing Study at SC18

By Scott Gibson

November 29, 2018

Jeffrey Vetter, Distinguished R&D Staff Member at Oak Ridge National Laboratory, led the SC18 Birds of a Feather session “Revisiting the 2008 ExaScale Computing Study and Venturing Predictions for 2028.”

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the then-emerging petascale systems at a system power of no more than 20 MW. On November 14 at the SC18 supercomputing conference in Dallas, some of the original contributors to the report participated in a Birds of a Feather session in which they reflected on the document, sharing what they deemed to be its hits and misses and making predictions for 2028.

Session leader, Jeffrey Vetter of Oak Ridge National Laboratory, said the 2008 report, titled “Exascale Computing Study: Technology Challenges in Achieving Exascale Systems,” has been cited more than 1,000 times and that many people look to it to understand what research agendas they should undertake and to consider what are the most salient challenges to be faced in high-performance computing.

The study was sponsored by the Defense Advanced Research Projects Agency (DARPA) Information Processing Techniques Office (IPTO) with Bill Harrod as program manager. The report represents the ideas of people from universities, industry, and research labs collected during periodic meetings conducted during the course of more than a year.

Harrod, who is now program manager for the Intelligence Advanced Research Projects Activity (IARPA), told the BoF audience that consideration of petascale system specifications as they existed at the time informed the study group members’ assumptions about exascale. Petascale systems operated at about 13 MW with several hundred cabinets. Thus, the anticipated parameters for exascale were 1018 operations/second at 20 MW and with fewer than 500 cabinets. The pivotal big-picture questions, Harrod said, were whether an exascale system was needed and could it be used for scientific discovery and other practical purposes.

Two other studies, on software and resiliency, respectively, followed the study upon which the 2008 report was based. The resounding, overarching comment concerning the findings of the three studies, Harrod said, was that co-design would be essential. He added that although the co-design concept was not revolutionary, it was determined to be critical for ensuring hardware design would correspond properly with the intended uses for the system, and it became an integral aspect of the US Department of Energy’s Exascale Computing Initiative (ECI) and Exascale Computing Project (ECP).

Peter Kogge of the University of Notre Dame led the Exascale Computing study and served as editor of the 2008 report. In his presentation for the BoF, he outlined four key challenges that surfaced from the study: energy and power, memory, concurrency, and resiliency. He also summarized the 2008 computing environment and what it was anticipated to look like by 2015, noting that the study team did not focus on application needs and the Roofline model. For matrix multiply like the High-Performance Linpack (HPL) benchmark, he said, having a large enough cache would supersede concerns about memory speed; and to reach a peak of 1 exaflops, the goal was to hit 20 pJ/flop.

The team assembled what Kogge referred to as an aggressive strawman with an architecture that was largely influenced by study contributor Bill Dally (then with Stanford University, now with Nvidia), who participated in the BoF. The architecture was characterized by multicore, no coherency, and shared global address space. Reaching the 1 exaflops peak meant 68 MW power usage from 583 racks. Relative to programming, about 1 billion threads needed to be maintained. A wire interconnect was assumed.

Kogge provided details from the report on the aggressive strawman system, which he said he considered to be “remarkably prescient” with respect to what ultimately materialized in the evolution toward exascale.

A 2015 paper for the International Supercomputing Conference (ISC) by Kogge titled “Updating Energy Model for Future Exascale Systems” examined an update of the models that the Exascale Computing study team had built to project performance for only the heavyweight (Xeon chips) sockets. The paper received a Gauss Award.

The study group’s final analysis showed that an exaflops could be reached by 2020, but with a peak of 180 MW to 430 MW.

The Study Contributors’ Assessments of Hits and Misses

Bill Harrod

At the inception of the DARPA studies, the target year for reaching exascale was 2015, but based on the results of the software study it was adjusted to 2018. Today, projections are focused on the 2021–2023 time frame. Harrod said that although the projections have evolved, the studies paved the way for DARPA’s Ubiquitous High-Performance Computing (UHPC) Exascale Projects and laid the foundation for DOE’s ECI and ECP. They have, he added, greatly enhanced the environment for exascale development.

In terms of hits and misses, the importance of co-design has played out at DOE and many other places, including the FastForward and PathForward programs, Harrod said. As a key miss of the study, he highlighted the fact that it did not foresee the impact of artificial intelligence (AI).

Peter Kogge

The study group’s approach in focusing on the heavyweight systems was dead-on through 2015, and the aggressive strawman they developed greatly resembles today’s GPU, Kogge said. In addition, he said the study group was right to point out that some form of memory stacking would be necessary, and that interconnects, at least locally within racks, would still largely be copper. Among the misses, he highlighted the heterogeneous systems and the SIMT threading model, which constitutes what is done with GPUs today.

Keren Bergman (Columbia University)

Bergman said that as someone whose background is in optical networks, she considered the close examination of the energy consumption of the interconnects in this study to be enlightening. With respect to the study’s hits, she opined that the deep discussions captured the growing challenge of data movement. However, in her view, one of the study’s sizable misses was the cost associated with manufacturability. She said substantial innovations would be required to integrate photonics into chips and remedy one of the last real bottlenecks.

Dean Klein (Micron/now retired)

Klein, who was vice president of memory system development at Micron at the time of the study and today in retirement mentors and motivates engineering students, highlighted as a hit the study group’s awareness that the energy of memory subsystems would drive compromises in the memory in systems, and as a miss the idea of NAND flash playing a role in supercomputing.

Bill Dally

The prescience of the study’s aggressive silicon strawman made it a hit, Dally said. Conversely, he viewed as shortcomings the paucity of capable networks due to funding, failure to anticipate AI, and an overly conservative approach in addressing software.

Exascale Study Contributors’ Predictions for 2028

The belief that complementary metal-oxide-semiconductor (CMOS) technology for constructing integrated circuits would remain predominant was a recurring notion, as the BoF contributors offered diverse predictions for 2028 based on the perspectives of their areas of expertise.

The contributors also responded to comments and questions from the audience.

Scott Gibson is a science writer and communications specialist with Oak Ridge National Laboratory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire