Optimizing Key Plasma Physics Code for Latest-Gen Nvidia GPUs Yields Threefold Increase in Processing Speed

By Thomas W. Overton

December 5, 2018

Experts at General Atomics (GA) have achieved a major improvement in processing speed for an important plasma physics code by working with experts from Nvidia to optimize it for operation on the latest GPU-based supercomputers.

This three-fold increase in processing time for the latest CGYRO code, used to simulate turbulent behavior of confined plasmas, was made possible by acquiring hardware similar to that used in the Summit supercomputer now being developed at Oak Ridge National Laboratory. Working on the system allowed GA researchers to test and validate their approach before deployment – an approach that could prove valuable for researchers in a variety of fields preparing for work on the next wave of supercomputing.

Early (left) and late (right) times in a simulation of multiscale plasma turbulence. At early times, short-wavelength electron-scale turbulence dominates, but is soon overtaken by long-wavelength ion-scale turbulence. Simultaneously capturing both scales is critical to the simulation realism but requires massive computational resources. (Source: General Atomics)

Physicists tend to be heavy users of Department of Energy (DOE) supercomputer resources. Those working on nuclear fusion rely heavily on modeling to predict plasma conditions inside a fusion reactor. An approach known as gyrokinetics has been used for nearly two decades to investigate turbulence in fusion plasmas because of its ability to model behavior of the ions and electrons in the plasma.

However, the extreme complexity of plasmas – which are heated to temperatures many times that of the sun to cause hydrogen isotopes to fuse into heavier elements – means that even limited simulations require enormous processing power. This is why all current models can simulate only portions of the plasma over limited timescales. As a result, physics researchers are constantly looking for ways to make their simulations more efficient.

Over a decade ago, scientists at GA – which operates the DIII-D National Fusion Facility for DOE at GA’s campus in San Diego – developed GYRO (a predecessor to CGYRO) to model the turbulent motion of confined plasma.

“In a toroidal containment device, the plasma fuel is confined by magnetic fields but suffers a very slow leakage due to turbulent behavior,” said Jeff Candy, manager of the Turbulence and Transport Group in GA’s Magnetic Fusion Energy Division. “GYRO has proved to be very accurate at simulating this complex nonlinear process in the core region of DIII-D and other tokamaks in the U.S. and Europe, but modeling the outside edge of the plasma is more challenging.”

Physicist Jeff Candy (front) and software developer Igor Sfiligoi (rear) of General Atomics worked together with their colleagues to optimize the CGYRO plasma physics code for Oak Ridge National Laboratory’s Summit supercomputer using a pair of nodes that mimicked Summi’s exotic processing environment. (Photo: Tom Overton/General Atomics)

The need to accurately model this more complex regime motivated the development of CGYRO. It was built from the ground up by combining the best algorithms from GYRO with new numerical schemes as well as a cutting-edge approach to parallelization that targeted the upcoming generation of multicore and GPU-based architectures.

“CGYRO was intended for operation on petascale systems,” said Igor Sfiligoi, a high-performance computer software developer at GA. “We’ve run it successfully on Titan for several years. But the original version of CGYRO was optimized for older GPUs, which means we weren’t using all the features of more modern GPUs.”

One goal in particular was optimizing CGYRO for use on Summit, Titan’s successor at ORNL. At the University of Colorado in Boulder GPU Hackathon in July, GA researchers worked with specialists from Nvidia to optimize CGYRO for the latest generation of GPU systems using the OpenACC programming model.

“A GPU-aware message passing interface is now used to move data directly between GPUs, without the need for staging first to the system memory,” Sfiligoi said. “Most of the remaining physics code execution has also been moved to the GPU, where it can now be efficiently executed without the excessive memory movement penalty.”

Since 2014, the Oak Ridge Leadership Computing Facility and its partners have held GPU hackathons to teach new GPU programmers how to leverage accelerated computing and help existing GPU programmers further optimize their codes. In 2018, there were seven such events at locations around the world, one of which was held at the UC Boulder. The GA team worked with Brent Leback and Craig Tierney from Nvidia at the hackathon.

In order to validate and benchmark the resulting code at the Hackathon, GA researchers needed access to Summit-like hardware. However, they did not have access to Summit nodes, and will not get it until 2019 at the earliest. In early 2018, to get around this problem, GA purchased two nodes that would mimic Summit’s fairly exotic processing environment.

The nodes comprise two IBM AC922 servers, each with two 16-core 4-hyperthread IBM Power9 CPUs and four Nvidia Tesla V100 with NVLink Volta GPUs, with 512GB of CPU RAM and 4x16GB of GPU RAM. GA was the first commercial user to acquire a setup like this.

Each Summit node uses six Nvidia Volta GPUs per two Power9 CPUs, tied together with Nvidia’s NVLink 2.0 technology (Image credit: Jason Richards/ORNL)

The result of the optimization efforts is a three-fold increase in processing speed on those nodes. The new version of CGYRO can thus be assumed to be optimized for use on Summit, where it will be able to run three times as many simulations in the same amount of time. Given how expensive and competitive supercomputer time is, a three-fold increase in the amount of work that can be done is an important achievement for GA’s plasma physicists.

“This improved computational efficiency on next-generation supercomputers will allow CGYRO to precisely compute plasma turbulence levels in the most challenging regions of the device operating space,” Candy said. “That opens up a new range of research that can help get us to commercial fusion power plants.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

New GE Simulations on Summit to Advance Offshore Wind Power

August 6, 2020

The wind energy sector is a frequent user of high-power simulations, with researchers aiming to optimize wind flows and energy production from the massive turbines. Now, researchers at GE are preparing to undertake a lar Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community and their demand for high compute power in low precision for Read more…

By Hartwig Anzt and Jack Dongarra

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implement a neural network (NN). Their novel architecture, reporte Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

PEARC20 Plenary Introduces Five Upcoming NSF-Funded HPC Systems

July 30, 2020

Five new HPC systems—three National Science Foundation-funded “Capacity” systems and two “Innovative Prototype/Testbed” systems—will be coming onlin Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This