Optimizing Key Plasma Physics Code for Latest-Gen Nvidia GPUs Yields Threefold Increase in Processing Speed

By Thomas W. Overton

December 5, 2018

Experts at General Atomics (GA) have achieved a major improvement in processing speed for an important plasma physics code by working with experts from Nvidia to optimize it for operation on the latest GPU-based supercomputers.

This three-fold increase in processing time for the latest CGYRO code, used to simulate turbulent behavior of confined plasmas, was made possible by acquiring hardware similar to that used in the Summit supercomputer now being developed at Oak Ridge National Laboratory. Working on the system allowed GA researchers to test and validate their approach before deployment – an approach that could prove valuable for researchers in a variety of fields preparing for work on the next wave of supercomputing.

Early (left) and late (right) times in a simulation of multiscale plasma turbulence. At early times, short-wavelength electron-scale turbulence dominates, but is soon overtaken by long-wavelength ion-scale turbulence. Simultaneously capturing both scales is critical to the simulation realism but requires massive computational resources. (Source: General Atomics)

Physicists tend to be heavy users of Department of Energy (DOE) supercomputer resources. Those working on nuclear fusion rely heavily on modeling to predict plasma conditions inside a fusion reactor. An approach known as gyrokinetics has been used for nearly two decades to investigate turbulence in fusion plasmas because of its ability to model behavior of the ions and electrons in the plasma.

However, the extreme complexity of plasmas – which are heated to temperatures many times that of the sun to cause hydrogen isotopes to fuse into heavier elements – means that even limited simulations require enormous processing power. This is why all current models can simulate only portions of the plasma over limited timescales. As a result, physics researchers are constantly looking for ways to make their simulations more efficient.

Over a decade ago, scientists at GA – which operates the DIII-D National Fusion Facility for DOE at GA’s campus in San Diego – developed GYRO (a predecessor to CGYRO) to model the turbulent motion of confined plasma.

“In a toroidal containment device, the plasma fuel is confined by magnetic fields but suffers a very slow leakage due to turbulent behavior,” said Jeff Candy, manager of the Turbulence and Transport Group in GA’s Magnetic Fusion Energy Division. “GYRO has proved to be very accurate at simulating this complex nonlinear process in the core region of DIII-D and other tokamaks in the U.S. and Europe, but modeling the outside edge of the plasma is more challenging.”

Physicist Jeff Candy (front) and software developer Igor Sfiligoi (rear) of General Atomics worked together with their colleagues to optimize the CGYRO plasma physics code for Oak Ridge National Laboratory’s Summit supercomputer using a pair of nodes that mimicked Summi’s exotic processing environment. (Photo: Tom Overton/General Atomics)

The need to accurately model this more complex regime motivated the development of CGYRO. It was built from the ground up by combining the best algorithms from GYRO with new numerical schemes as well as a cutting-edge approach to parallelization that targeted the upcoming generation of multicore and GPU-based architectures.

“CGYRO was intended for operation on petascale systems,” said Igor Sfiligoi, a high-performance computer software developer at GA. “We’ve run it successfully on Titan for several years. But the original version of CGYRO was optimized for older GPUs, which means we weren’t using all the features of more modern GPUs.”

One goal in particular was optimizing CGYRO for use on Summit, Titan’s successor at ORNL. At the University of Colorado in Boulder GPU Hackathon in July, GA researchers worked with specialists from Nvidia to optimize CGYRO for the latest generation of GPU systems using the OpenACC programming model.

“A GPU-aware message passing interface is now used to move data directly between GPUs, without the need for staging first to the system memory,” Sfiligoi said. “Most of the remaining physics code execution has also been moved to the GPU, where it can now be efficiently executed without the excessive memory movement penalty.”

Since 2014, the Oak Ridge Leadership Computing Facility and its partners have held GPU hackathons to teach new GPU programmers how to leverage accelerated computing and help existing GPU programmers further optimize their codes. In 2018, there were seven such events at locations around the world, one of which was held at the UC Boulder. The GA team worked with Brent Leback and Craig Tierney from Nvidia at the hackathon.

In order to validate and benchmark the resulting code at the Hackathon, GA researchers needed access to Summit-like hardware. However, they did not have access to Summit nodes, and will not get it until 2019 at the earliest. In early 2018, to get around this problem, GA purchased two nodes that would mimic Summit’s fairly exotic processing environment.

The nodes comprise two IBM AC922 servers, each with two 16-core 4-hyperthread IBM Power9 CPUs and four Nvidia Tesla V100 with NVLink Volta GPUs, with 512GB of CPU RAM and 4x16GB of GPU RAM. GA was the first commercial user to acquire a setup like this.

Each Summit node uses six Nvidia Volta GPUs per two Power9 CPUs, tied together with Nvidia’s NVLink 2.0 technology (Image credit: Jason Richards/ORNL)

The result of the optimization efforts is a three-fold increase in processing speed on those nodes. The new version of CGYRO can thus be assumed to be optimized for use on Summit, where it will be able to run three times as many simulations in the same amount of time. Given how expensive and competitive supercomputer time is, a three-fold increase in the amount of work that can be done is an important achievement for GA’s plasma physicists.

“This improved computational efficiency on next-generation supercomputers will allow CGYRO to precisely compute plasma turbulence levels in the most challenging regions of the device operating space,” Candy said. “That opens up a new range of research that can help get us to commercial fusion power plants.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire