Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

By John Russell

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about quantum computing’s potential is matched by its cautionary tone on QC’s near-term prospects. After a webinar to introduce the report, one questioner asked the presenting panel if the report’s finding that practical, error-corrected quantum computers won’t be built for a decade or longer wasn’t too disappointing.

“I think we need to be careful to remember that there’s a range of quantum computers that the report was discussing. [It] is the case the fully error-corrected quantum computers that can crack modern cyphers are quite far off, over a decade off,” answered Mark Horowitz, chair of the NASEM committee that prepared the report and a Stanford University professor, “but there are a number of groups working to build these noisy intermediate scale quantum computers (NISQ). The committee thinks that those are likely to be deployed relatively quickly, in the early 2020s, and the capabilities of those machines is still a little bit uncertain so, yes there are many challenges to build the ultimate quantum computer but I think there are opportunities for quantum computers much sooner than when those larger machines are built.”

In many ways one could argue this latest report is a needed dose of realism in today’s hyperventilating quantum computing environment. Make no mistake, the report argues that quantum computing has formidable potential and the swelling investments in QC and its surging research activities are fully justified. Indeed more is required given the brewing global race, contends the report. Nevertheless, the caveat is a substantial one; many problems remain to be solved perhaps error correction preeminent among them.

Even the worry over quantum computing’s potential to crack current cryptographic algorithms – part of the reason the report was commissioned by director of National Intelligence – is premature says the report.

Quick excerpt: “The committee (Committee on Technical Assessment of the Feasibility and Implications of Quantum Computing) focused on understanding the current state of quantum computing hardware, software, and algorithms, and what advances would be needed to create a scalable, gate-based quantum computer capable of deploying Shor’s algorithm. Early in this process, it became clear that the current engineering approaches could not directly scale to the size needed to create this scalable, fully error corrected quantum computer.”

John Martinis, another member of the committee and prominent quantum computing researcher at Google said during the webinar Q&A, “Progress in the field has been quite good in the last few years, and people have been able not just to do basics physics experiments but [also] to start building quantum computing systems. I think there’s a lot more optimism that people can build things and get it to work properly. Of course there’s lot of work to be done to get them to work well and match them to problems but the pace [of progress] has picked up and there’s interesting things that have come out. I think that in the next year or two, [we] won’t get to solving actual problems yet but there will be a lot better machines out there.”

You get the picture. Quantum computing is important, perhaps vastly so for some classes of problems including security, but it’s not here yet and will only arrive with continued investment and patience according to this study. The study seems designed to temper near-term expectations while steeling interested parties for a longer-term effort.

The report is a broad and accessible compilation of the key aspects of quantum computing technology as they exist today. For those less familiar with QC, the summary section is a good overview. For long-time quantum watchers, while most of the material won’t be new, the core of the report is substantive if not tutorial. It’s divided into seven chapters:

  • Progress in Computing (chapter 1) provides background and context on the field of computing, introducing the computational advantage of a quantum computer. It takes a careful look at why and how classical computing technologies scaled in performance for over half a century.
  • Quantum Computing: A New Paradigm (chapter 2) introduces the principles of quantum mechanics that make quantum computing different, exciting, and challenging to implement, and compares them with operations of the computers deployed today, which process information according to classical laws of physics—known in the quantum computing community as “classical computers.” It introduces the three different types of quantum computing studied in this report: analog quantum, digital noisy intermediate-scale quantum (digital NISQ), and fully error corrected quantum computers.
  • Quantum Algorithms and Applications (chapter 3) looks at quantum algorithms in more depth. The chapter starts with known foundational algorithms for fully error corrected machines but then shows that the overhead for error correction is quite large—that is, it takes many physical qubits and physical gate operations to emulate an error-free, so-called logical qubit that can be used in complex algorithms. “Such machines are therefore unlikely to exist for a number of years.”
  • Quantum Computing’s Implications for Cryptography (chapter 4) discusses the classical cryptographic ciphers currently used to protect electronic data and communications, how a large quantum computer could defeat these systems, and what the cryptography community should do now (and has begun to do) to address these vulnerabilities.
  • Chapters 5 (hardware) and 6 (software) discuss general architectures and progress to date in building the necessary hardware and software components, respectively, required for quantum computing.
  • Feasibility and Time Frames of Quantum Computing (chapter 7) provides the committee’s assessment of the technical progress and other factors required to make significant progress in quantum computing, tools for assessing and reassessing the possible time frames and implications of such developments, and an outlook for the future of the field.

The report hits all the right topics in an overview fashion. Quantum subsystems (which are quite challenging), software, quantum sensing and metrology, the necessity of blending classical computing with quantum processors to build functional quantum computers, etc. As an example, quantum storage has turned out to be tricky.

“Quantum storage is challenging because of a fundamental characteristic of quantum systems. It’s the no cloning theory, which says that you can’t have quantum information and then copy it some place and leave the original version the same. As a result if you talk about quantum storage you typically are talking about a thing that is referred to as QRAM which actually has some classical storage [that quickly encodes] that classical storage into quantum state. We talk a little bit about that in the report. That’s a technology which is much less developed than current qubit technology,” noted Bob Blakley, a committee member and the Global Head of Information Security Innovation at Citigroup.

Martinis said, “The idea of breaking the quantum computer into the different subsystems is of course important and you want to think about that. But because of this no cloning, no copying [rule], it means that the interfaces between all the different components are fundamentally different because you can’t just send the information in a box like you can for a classical computer. That means you have to have a much higher degree of system integration as you build complex quantum computers system. So it’s possible to do all of this. It just makes it more difficult.”

In tackling the problem, the report broadly classifies quantum computers into three general categories: “(1) Analog quantum computers” directly manipulate the interactions between qubits without breaking these actions into primitive gate operations. Examples of analog machines include quantum annealers, adiabatic quantum computers, and direct quantum simulators. (2) Digital NISQ computers operate by carrying out an algorithm of interest using primitive gate operations on physical qubits. Noise is present in both of these types of machine, which means that the quality (measured by error rates and qubit coherence times) will limit the complexity of the problems that these machines can solve. (3) Fully error-corrected quantum computers” are a version of gate-based QCs made more robust through deployment of quantum error correction (QEC), which enables noisy physical qubits to emulate stable logical qubits so that the computer behaves reliably for any computation.”

Most of the discussion is of systems built from superconducting qubits or trapped ions which seem to be the most advanced qubit technologies at present. Error correcting, not surprisingly, received a fair amount of discussion. “QEC incurs significant overheads in terms of both the number of physical qubits required to emulate a more robust and stable qubit, called a ‘logical qubit,’ and the number of primitive qubit operations that must be performed on physical qubits to emulate a quantum operation on this logical qubit,” notes the report. (See table below)

The notions of quantum supremacy and quantum advantage are also addressed: “Demonstration of ‘quantum supremacy’—that is, completing a task that is intractable on a classical computer, whether or not the task has practical utility—is one. While several teams have been focused on this goal, it has not yet been demonstrated (as of mid-2018). Another major milestone is creating a commercially useful quantum computer, which would require a QC that carries out at least one practical task more efficiently than any classical computer. While this milestone is in theory harder than achieving quantum supremacy—since the application in question must be better and more useful than available classical approaches—proving quantum supremacy could be difficult, especially for analog QC. Thus, it is possible that a useful application could arise before quantum supremacy is demonstrated.”

The new report echoes the notion that quantum computers will be special purpose devices.

“Quantum computing is not likely to take over for classical computing,” said Horowitz during Q&A. “It is rather more likely to be used as an accelerator attached to conventional computing to help in certain kinds of computations. In many kinds of computations quantum computers would not actually be better than a classical computer; the classical computer would be better and certainly cheaper.”

Martinis agreed and suggested an internet or cloud-based access model is what is likely to emerge in terms of gaining access and indeed IBM, Rigetti Computing, and D-Wave all offer quantum clouds now.

Asked if there might ever be a quantum laptop, he said “I think you want to imagine a quantum computer being like a supercomputer which are traditionally very big machines and that’s what people are building right now. The various implementations are 3m x 3m x 3m kinds of machines looking at all the hardware. And of course in the beginning [they are] perhaps a little bit large because you kind of brute force it and don’t have all the technologies scaled down to do everything. But as you want to scale up the number of qubits, it’s probably going to stay large.

“So I think it’s going to be a large, a special purpose machine for next few years and who knows what’s going to happen in the future. I think one of the interesting things that’s happened is these machines are now available on cloud access so you’re remotely accessing that. So although it is nice to think about having a quantum computer in your own lab or space, it works just fine for the quantum computer to be remotely somewhere and use the internet and cloud computing to access that. [If] you think about your cell phone right now, that’s basically what you are doing. Your cellphone is an interface device and all the big computing is done in a datacenters. We think that’s probably the right model in going forward in the future.”

The report is best read directly and is available as a free PDF. It will be interesting to monitor how closely this report hits or misses the mark.

Member of the Academies’ Committee on Technical Assessment of the Feasibility and Implications of Quantum Computing, which prepared the report: Mark A. Horowitz, NAE, Stanford University, chair; Alán Aspuru-Guzik, University of Toronto;
David D. Awschalom, NAS/NAE, University of Chicago; Bob Blakley, Citigroup; Dan Boneh, NAE, Stanford University;
Susan N. Coppersmith, NAS, University of Wisconsin, Madison; Jungsang Kim, Duke University;
John M. Martinis, Google; Margaret Martonosi, Princeton University;
Michele Mosca, University of Waterloo;
William D. Oliver, Massachusetts Institute of Technology; Krysta Svore, Microsoft Research; Umesh V. Vazirani, NAS, University of California, Berkeley

Images/Figures Source: Quantum Computing: Progress and Prospects report from the National Academies of Science, Engineering, and Medicine, 12/3/18

Link to report: https://www.nap.edu/catalog/25196/quantum-computing-progress-and-prospects

Link to press release: http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=25196&_ga=2.224720602.191491450.1544026218-508219378.1544026218

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

When in Rome: AMD Announces New Epyc CPU for HPC, Server and Cloud Wins

September 18, 2019

Where else but Rome could AMD hold the official Europe launch party for its second generation of Epyc microprocessors, codenamed Rome. Today, AMD did just that announcing key server wins, important cloud provider wins Read more…

By John Russell

Dell’s AMD-Powered Server Line Targets High-End Jobs

September 17, 2019

Dell Technologies rolled out five new servers this week based on AMD’s latest Epyc processor that are geared toward data-driven workloads running on increasingly popular multi-cloud platforms as well as in the HPC data Read more…

By George Leopold

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Rumors of My Death Are Still Exaggerated: The Mainframe

[Connect with Spectrum users and learn new skills in the IBM Spectrum LSF User Community.]

As of 2017, 92 of the world’s top 100 banks used mainframes. Read more…

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

When in Rome: AMD Announces New Epyc CPU for HPC, Server and Cloud Wins

September 18, 2019

Where else but Rome could AMD hold the official Europe launch party for its second generation of Epyc microprocessors, codenamed Rome. Today, AMD did just that Read more…

By John Russell

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This