Topology Can Help Us Find Patterns in Weather

By James Reinders

December 6, 2018

Topology–the study of shapes–seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are being recast to use topology. For instance, looking for weather and climate patterns.

The Quest for Explainability

Interestingly, a key motivation for looking to topology is explainability (interpretability). One might say that, for many, the honeymoon period with “AI” (Artificial Intelligence, including machine learning) is over. Now, we hear talk of “XAI” (Explainable Artificial Intelligence). Goals for XAI expressed by researchers at DARPA (Defense Advanced Research Projects Agency) are to [1] produce more explainable models, while maintaining a high level of learning performance (prediction accuracy), and [2] enable human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners.

A goal of XAI is to enable human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners.

An XAI research area for this is called topological data analysis, and it offers us the opportunity to relate results of data analysis in terms of shapes.

Interest in Extreme Weather

Thanks to high-performance computing, weather predictions have become both more accurate and more precise (localized) in recent years. While this is true for most weather, it is far less the case for extreme weather events. It turns out that the extreme weather, such as thunderstorms, blizzards, heavy rains, dry spells, and hurricanes, are more challenging to forecast than more ordinary weather. The immediate and tangible benefits of better forecasting of extreme weather better are obvious. Additionally, there are longer-term trends to consider as well. In this vein, puzzling over the apparent supercharging of extreme weather events due to human activity is one of the youngest and most important branches of climate science.

Weather vs. Climate

Scientists speak distinctly of weather forecasts vs. climate forecasts. Today, the two types of modeling and forecasting use different mathematical modeling and computer programming. The fundamental reason for differences stem from the fact that computer resources are not unlimited in scope and speed. If we had infinitely fast computers at our command, the models for weather and climate would converge. As it is, we are very far from that, and thus weather and climate modeling are very different beasts in practice. Despite the differences in weather and climate modeling, techniques such as using topological data analysis will find a place in both weather and climate forecasting.

The concept of weather versus climate can be thought of this way: a weather forecast seeks to help us understand if it will rain on Thursday, while a climate forecast seeks to help us understand if a drought will continue for the next decade. A weather forecast for a hurricane in Central Florida should help us deploy emergency workers now, while a climate forecast for years of drought could guide planning for water rationing programs, longer-term investments in locating more sources, or reducing demand. It is not unusual for climate models to be run on supercomputers only when the computer is not being used for the first priority, which is weather forecasting. This makes sense when you consider there is no immediate risk if a climate computation takes a bit longer to run, but the timeliness of a weather forecast can be critical.

Patterns from Topological Analysis

Researchers at the University of Liverpool[1], working with researchers at Lawrence Berkeley National Laboratory, are exploring the use of topological data analysis for detecting and classifying patterns (shapes) in climate data.

A pattern of interest is that of events called atmospheric rivers. An atmospheric river is a long narrow high-moisture filament, resembling a river in many ways including their shape. They have been called “rivers in the sky.”

Given this “shape” thinking, it is not surprising that atmospheric rivers can have very different widths and lengths, but they have connectivity like a river and holes like small islands in the path of a river. We know from shapes the differences between a river and a string of unconnected lakes. Atmospheric rivers play a key role in water movement, with a strong atmospheric river having a flow seven to 15 times that of the flow at the mouth of the Mississippi River. Using topological analysis, atmospheric rivers can be identified and separated from events in the atmosphere that do not have the correct shape of an atmospheric river.

atmospheric rivers – have the shape of rivers in the sky; they can yield extreme rainfall and floods that takes away life, or normal rainfall that supports life

Atmospheric rivers that contain the largest amounts of water vapor and the strongest winds can lead to extreme rainfall and floods when they stall over watersheds vulnerable to flooding. Such events can disrupt travel, induce mudslides, and lead to catastrophic damage to life and property. Not all atmospheric rivers cause damage, the majority are simply responsible for the rain or snow that animals and plants depend upon for life.

Wet weather for Seattle: An Atmosphere River commonly called the Pineapple Express is easy to see in this image.

 

No Atmosphere Rivers in this image.
Shape tell the story: The familiar shape of a “river” jumps out in the first image, and is absent in the second image. It seems intuitive that the image with an apparent river will result in a lot of rainfall in the U.S. Pacific Northwest. The first image shows an atmospheric river (AR), this particular one is commonly called the “Pineapple Express” which is characterized by a strong flow of the moisture associated with the heavy precipitation originating from the close waters to the Hawaiian Islands. The second image is an example of a non-atmospheric river that does not form a narrow corridor of high concentrated atmospheric moisture in the atmosphere reaching the Pacific coast of North America. Both images are courtesy of NERSC@LBL — they come from an integrated water vapor (IWV, kg/m^2) product of the version 5.1 of the Community Atmosphere Model (CAM 5.1) simulated at the National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley Lab, CA, USA.

The researchers combined ideas from topological data analysis with machine learning for detecting, classifying and characterizing extreme weather events, such as certain atmospheric rivers. While these researchers were developing their techniques to analyze climate model output, it will have applicability to weather model output as well. They have successfully demonstrated this approach on the Cori supercomputer. Cori, one of the world’s dozen most powerful supercomputers, with high performance Intel multicore processors, is operated by the National Energy Research Scientific Computing Center (NERSC).[2]

Researchers have published results showing that their accuracy (up to 90%) is higher than any prior published results for detection and classification of atmospheric rivers. They applied their algorithm to climate models, using data spanning nearly four decades of weather data, including four different spatial resolutions and two different temporal resolutions. Computing on up to 480 high-performance Intel Xeon (Haswell) processor cores, their typical run times for the analysis was on the order of 10 minutes for the topological analysis followed by a few hours for the classification algorithm. Their implementation used C++ code for the topological data analysis, and Python scikit-learn for the machine learning classification algorithm known as SVM (Support Vector Machine). For the SVM, good scaling was achieved because the Intel Data Analytics Acceleration Library (DAAL) was installed to accelerate Python.

Shape of Weather to Come

We all have a vested interest in seeing climate and weather models improve, and this is especially true for extreme weather which can literally be a matter of life or death. This particular work shows that thinking in terms of shapes via topological data analysis, combined with machine learning, may provide a uniquely powerful approach for identification and analysis of extreme weather. Aside from providing a more accurate method, the use of topological data analysis might lead to better interpretability of the predictions. Whether we are considering deploying a thousand emergency workers now, or considering a multi-billion-dollar infrastructure investment, we would like to be able to get explanations from those responsible for the forecast motivating our potential actions. Humans ultimately need to be able to defend their predictions, even if they come from “artificially intelligent partners” (AI programs). Topological data analysis offers to help scientists with this challenge, and do so in the familiar language of shapes.


[1] Machine Learning and Topological Data Analysis: Application to Pattern Classification in Fluid and Climate Simulations, by Vitaliy Kurlin and Grzegorz Muszynski from the University of Liverpool, plus Michael Wehner, Karthik Kashinath, and Prabhat from Lawrence Berkeley National Laboratory, presented at the Big Data Summit.

[2] Number 10 on the TOP500.org when the work was done, now #12 as of the November 2018 list.

James Reinders is an HPC enthusiast and author of eight books with more than 30 years of industry experience, including 27 years at Intel Corporation (retired June 2016).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Rockport Networks Launches 300 Gbps Switchless Fabric, Reveals 396-Node Deployment at TACC

October 27, 2021

Rockport Networks emerged from stealth this week with the launch of its 300 Gbps switchless networking architecture focused on the needs of the high-performance computing and the advanced-scale AI market. Early customers Read more…

AWS Adds Gaudi-Powered, ML-Optimized EC2 DL1 Instances, Now in GA

October 27, 2021

As machine learning becomes a dominating use case for local and cloud computing, companies are racing to provide solutions specifically optimized and accelerated for AI applications. Now, Amazon Web Services (AWS) is int Read more…

Fireside Chat with LBNL’s Advanced Quantum Testbed Director

October 26, 2021

Last week, Irfan Siddiqi led a “fireside chat” with a few media and analysts to introduce the Department of Energy’s relatively new Advanced Quantum Testbed (AQT), which is based at Lawrence Berkeley National Labor Read more…

Graphcore Introduces Larger-Than-Ever IPU-Based Pods

October 22, 2021

After launching its second-generation intelligence processing units (IPUs) in 2020, four years after emerging from stealth, Graphcore is now boosting its product line with its largest commercially-available IPU-based sys Read more…

Quantum Chemistry Project to Be Among the First on EuroHPC’s LUMI System

October 22, 2021

Finland’s CSC has just installed the first module of LUMI, a 550-peak petaflops system supported by the European Union’s EuroHPC Joint Undertaking. While LUMI -- pictured in the header -- isn’t slated to complete i Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 577238446

Putting bitrates into perspective

Recently, we talked about the advances NICE DCV has made to push pixels from cloud-hosted desktops or applications over the internet even more efficiently than before. Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Rockport Networks Launches 300 Gbps Switchless Fabric, Reveals 396-Node Deployment at TACC

October 27, 2021

Rockport Networks emerged from stealth this week with the launch of its 300 Gbps switchless networking architecture focused on the needs of the high-performance Read more…

AWS Adds Gaudi-Powered, ML-Optimized EC2 DL1 Instances, Now in GA

October 27, 2021

As machine learning becomes a dominating use case for local and cloud computing, companies are racing to provide solutions specifically optimized and accelerate Read more…

Fireside Chat with LBNL’s Advanced Quantum Testbed Director

October 26, 2021

Last week, Irfan Siddiqi led a “fireside chat” with a few media and analysts to introduce the Department of Energy’s relatively new Advanced Quantum Testb Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the powe Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire