Topology Can Help Us Find Patterns in Weather

By James Reinders

December 6, 2018

Topology–the study of shapes–seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are being recast to use topology. For instance, looking for weather and climate patterns.

The Quest for Explainability

Interestingly, a key motivation for looking to topology is explainability (interpretability). One might say that, for many, the honeymoon period with “AI” (Artificial Intelligence, including machine learning) is over. Now, we hear talk of “XAI” (Explainable Artificial Intelligence). Goals for XAI expressed by researchers at DARPA (Defense Advanced Research Projects Agency) are to [1] produce more explainable models, while maintaining a high level of learning performance (prediction accuracy), and [2] enable human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners.

A goal of XAI is to enable human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners.

An XAI research area for this is called topological data analysis, and it offers us the opportunity to relate results of data analysis in terms of shapes.

Interest in Extreme Weather

Thanks to high-performance computing, weather predictions have become both more accurate and more precise (localized) in recent years. While this is true for most weather, it is far less the case for extreme weather events. It turns out that the extreme weather, such as thunderstorms, blizzards, heavy rains, dry spells, and hurricanes, are more challenging to forecast than more ordinary weather. The immediate and tangible benefits of better forecasting of extreme weather better are obvious. Additionally, there are longer-term trends to consider as well. In this vein, puzzling over the apparent supercharging of extreme weather events due to human activity is one of the youngest and most important branches of climate science.

Weather vs. Climate

Scientists speak distinctly of weather forecasts vs. climate forecasts. Today, the two types of modeling and forecasting use different mathematical modeling and computer programming. The fundamental reason for differences stem from the fact that computer resources are not unlimited in scope and speed. If we had infinitely fast computers at our command, the models for weather and climate would converge. As it is, we are very far from that, and thus weather and climate modeling are very different beasts in practice. Despite the differences in weather and climate modeling, techniques such as using topological data analysis will find a place in both weather and climate forecasting.

The concept of weather versus climate can be thought of this way: a weather forecast seeks to help us understand if it will rain on Thursday, while a climate forecast seeks to help us understand if a drought will continue for the next decade. A weather forecast for a hurricane in Central Florida should help us deploy emergency workers now, while a climate forecast for years of drought could guide planning for water rationing programs, longer-term investments in locating more sources, or reducing demand. It is not unusual for climate models to be run on supercomputers only when the computer is not being used for the first priority, which is weather forecasting. This makes sense when you consider there is no immediate risk if a climate computation takes a bit longer to run, but the timeliness of a weather forecast can be critical.

Patterns from Topological Analysis

Researchers at the University of Liverpool[1], working with researchers at Lawrence Berkeley National Laboratory, are exploring the use of topological data analysis for detecting and classifying patterns (shapes) in climate data.

A pattern of interest is that of events called atmospheric rivers. An atmospheric river is a long narrow high-moisture filament, resembling a river in many ways including their shape. They have been called “rivers in the sky.”

Given this “shape” thinking, it is not surprising that atmospheric rivers can have very different widths and lengths, but they have connectivity like a river and holes like small islands in the path of a river. We know from shapes the differences between a river and a string of unconnected lakes. Atmospheric rivers play a key role in water movement, with a strong atmospheric river having a flow seven to 15 times that of the flow at the mouth of the Mississippi River. Using topological analysis, atmospheric rivers can be identified and separated from events in the atmosphere that do not have the correct shape of an atmospheric river.

atmospheric rivers – have the shape of rivers in the sky; they can yield extreme rainfall and floods that takes away life, or normal rainfall that supports life

Atmospheric rivers that contain the largest amounts of water vapor and the strongest winds can lead to extreme rainfall and floods when they stall over watersheds vulnerable to flooding. Such events can disrupt travel, induce mudslides, and lead to catastrophic damage to life and property. Not all atmospheric rivers cause damage, the majority are simply responsible for the rain or snow that animals and plants depend upon for life.

Wet weather for Seattle: An Atmosphere River commonly called the Pineapple Express is easy to see in this image.

 

No Atmosphere Rivers in this image.
Shape tell the story: The familiar shape of a “river” jumps out in the first image, and is absent in the second image. It seems intuitive that the image with an apparent river will result in a lot of rainfall in the U.S. Pacific Northwest. The first image shows an atmospheric river (AR), this particular one is commonly called the “Pineapple Express” which is characterized by a strong flow of the moisture associated with the heavy precipitation originating from the close waters to the Hawaiian Islands. The second image is an example of a non-atmospheric river that does not form a narrow corridor of high concentrated atmospheric moisture in the atmosphere reaching the Pacific coast of North America. Both images are courtesy of [email protected] — they come from an integrated water vapor (IWV, kg/m^2) product of the version 5.1 of the Community Atmosphere Model (CAM 5.1) simulated at the National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley Lab, CA, USA.

The researchers combined ideas from topological data analysis with machine learning for detecting, classifying and characterizing extreme weather events, such as certain atmospheric rivers. While these researchers were developing their techniques to analyze climate model output, it will have applicability to weather model output as well. They have successfully demonstrated this approach on the Cori supercomputer. Cori, one of the world’s dozen most powerful supercomputers, with high performance Intel multicore processors, is operated by the National Energy Research Scientific Computing Center (NERSC).[2]

Researchers have published results showing that their accuracy (up to 90%) is higher than any prior published results for detection and classification of atmospheric rivers. They applied their algorithm to climate models, using data spanning nearly four decades of weather data, including four different spatial resolutions and two different temporal resolutions. Computing on up to 480 high-performance Intel Xeon (Haswell) processor cores, their typical run times for the analysis was on the order of 10 minutes for the topological analysis followed by a few hours for the classification algorithm. Their implementation used C++ code for the topological data analysis, and Python scikit-learn for the machine learning classification algorithm known as SVM (Support Vector Machine). For the SVM, good scaling was achieved because the Intel Data Analytics Acceleration Library (DAAL) was installed to accelerate Python.

Shape of Weather to Come

We all have a vested interest in seeing climate and weather models improve, and this is especially true for extreme weather which can literally be a matter of life or death. This particular work shows that thinking in terms of shapes via topological data analysis, combined with machine learning, may provide a uniquely powerful approach for identification and analysis of extreme weather. Aside from providing a more accurate method, the use of topological data analysis might lead to better interpretability of the predictions. Whether we are considering deploying a thousand emergency workers now, or considering a multi-billion-dollar infrastructure investment, we would like to be able to get explanations from those responsible for the forecast motivating our potential actions. Humans ultimately need to be able to defend their predictions, even if they come from “artificially intelligent partners” (AI programs). Topological data analysis offers to help scientists with this challenge, and do so in the familiar language of shapes.


[1] Machine Learning and Topological Data Analysis: Application to Pattern Classification in Fluid and Climate Simulations, by Vitaliy Kurlin and Grzegorz Muszynski from the University of Liverpool, plus Michael Wehner, Karthik Kashinath, and Prabhat from Lawrence Berkeley National Laboratory, presented at the Big Data Summit.

[2] Number 10 on the TOP500.org when the work was done, now #12 as of the November 2018 list.

James Reinders is an HPC enthusiast and author of eight books with more than 30 years of industry experience, including 27 years at Intel Corporation (retired June 2016).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This