Topology Can Help Us Find Patterns in Weather

By James Reinders

December 6, 2018

Topology–the study of shapes–seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are being recast to use topology. For instance, looking for weather and climate patterns.

The Quest for Explainability

Interestingly, a key motivation for looking to topology is explainability (interpretability). One might say that, for many, the honeymoon period with “AI” (Artificial Intelligence, including machine learning) is over. Now, we hear talk of “XAI” (Explainable Artificial Intelligence). Goals for XAI expressed by researchers at DARPA (Defense Advanced Research Projects Agency) are to [1] produce more explainable models, while maintaining a high level of learning performance (prediction accuracy), and [2] enable human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners.

A goal of XAI is to enable human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners.

An XAI research area for this is called topological data analysis, and it offers us the opportunity to relate results of data analysis in terms of shapes.

Interest in Extreme Weather

Thanks to high-performance computing, weather predictions have become both more accurate and more precise (localized) in recent years. While this is true for most weather, it is far less the case for extreme weather events. It turns out that the extreme weather, such as thunderstorms, blizzards, heavy rains, dry spells, and hurricanes, are more challenging to forecast than more ordinary weather. The immediate and tangible benefits of better forecasting of extreme weather better are obvious. Additionally, there are longer-term trends to consider as well. In this vein, puzzling over the apparent supercharging of extreme weather events due to human activity is one of the youngest and most important branches of climate science.

Weather vs. Climate

Scientists speak distinctly of weather forecasts vs. climate forecasts. Today, the two types of modeling and forecasting use different mathematical modeling and computer programming. The fundamental reason for differences stem from the fact that computer resources are not unlimited in scope and speed. If we had infinitely fast computers at our command, the models for weather and climate would converge. As it is, we are very far from that, and thus weather and climate modeling are very different beasts in practice. Despite the differences in weather and climate modeling, techniques such as using topological data analysis will find a place in both weather and climate forecasting.

The concept of weather versus climate can be thought of this way: a weather forecast seeks to help us understand if it will rain on Thursday, while a climate forecast seeks to help us understand if a drought will continue for the next decade. A weather forecast for a hurricane in Central Florida should help us deploy emergency workers now, while a climate forecast for years of drought could guide planning for water rationing programs, longer-term investments in locating more sources, or reducing demand. It is not unusual for climate models to be run on supercomputers only when the computer is not being used for the first priority, which is weather forecasting. This makes sense when you consider there is no immediate risk if a climate computation takes a bit longer to run, but the timeliness of a weather forecast can be critical.

Patterns from Topological Analysis

Researchers at the University of Liverpool[1], working with researchers at Lawrence Berkeley National Laboratory, are exploring the use of topological data analysis for detecting and classifying patterns (shapes) in climate data.

A pattern of interest is that of events called atmospheric rivers. An atmospheric river is a long narrow high-moisture filament, resembling a river in many ways including their shape. They have been called “rivers in the sky.”

Given this “shape” thinking, it is not surprising that atmospheric rivers can have very different widths and lengths, but they have connectivity like a river and holes like small islands in the path of a river. We know from shapes the differences between a river and a string of unconnected lakes. Atmospheric rivers play a key role in water movement, with a strong atmospheric river having a flow seven to 15 times that of the flow at the mouth of the Mississippi River. Using topological analysis, atmospheric rivers can be identified and separated from events in the atmosphere that do not have the correct shape of an atmospheric river.

atmospheric rivers – have the shape of rivers in the sky; they can yield extreme rainfall and floods that takes away life, or normal rainfall that supports life

Atmospheric rivers that contain the largest amounts of water vapor and the strongest winds can lead to extreme rainfall and floods when they stall over watersheds vulnerable to flooding. Such events can disrupt travel, induce mudslides, and lead to catastrophic damage to life and property. Not all atmospheric rivers cause damage, the majority are simply responsible for the rain or snow that animals and plants depend upon for life.

Wet weather for Seattle: An Atmosphere River commonly called the Pineapple Express is easy to see in this image.

 

No Atmosphere Rivers in this image.
Shape tell the story: The familiar shape of a “river” jumps out in the first image, and is absent in the second image. It seems intuitive that the image with an apparent river will result in a lot of rainfall in the U.S. Pacific Northwest. The first image shows an atmospheric river (AR), this particular one is commonly called the “Pineapple Express” which is characterized by a strong flow of the moisture associated with the heavy precipitation originating from the close waters to the Hawaiian Islands. The second image is an example of a non-atmospheric river that does not form a narrow corridor of high concentrated atmospheric moisture in the atmosphere reaching the Pacific coast of North America. Both images are courtesy of [email protected] — they come from an integrated water vapor (IWV, kg/m^2) product of the version 5.1 of the Community Atmosphere Model (CAM 5.1) simulated at the National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley Lab, CA, USA.

The researchers combined ideas from topological data analysis with machine learning for detecting, classifying and characterizing extreme weather events, such as certain atmospheric rivers. While these researchers were developing their techniques to analyze climate model output, it will have applicability to weather model output as well. They have successfully demonstrated this approach on the Cori supercomputer. Cori, one of the world’s dozen most powerful supercomputers, with high performance Intel multicore processors, is operated by the National Energy Research Scientific Computing Center (NERSC).[2]

Researchers have published results showing that their accuracy (up to 90%) is higher than any prior published results for detection and classification of atmospheric rivers. They applied their algorithm to climate models, using data spanning nearly four decades of weather data, including four different spatial resolutions and two different temporal resolutions. Computing on up to 480 high-performance Intel Xeon (Haswell) processor cores, their typical run times for the analysis was on the order of 10 minutes for the topological analysis followed by a few hours for the classification algorithm. Their implementation used C++ code for the topological data analysis, and Python scikit-learn for the machine learning classification algorithm known as SVM (Support Vector Machine). For the SVM, good scaling was achieved because the Intel Data Analytics Acceleration Library (DAAL) was installed to accelerate Python.

Shape of Weather to Come

We all have a vested interest in seeing climate and weather models improve, and this is especially true for extreme weather which can literally be a matter of life or death. This particular work shows that thinking in terms of shapes via topological data analysis, combined with machine learning, may provide a uniquely powerful approach for identification and analysis of extreme weather. Aside from providing a more accurate method, the use of topological data analysis might lead to better interpretability of the predictions. Whether we are considering deploying a thousand emergency workers now, or considering a multi-billion-dollar infrastructure investment, we would like to be able to get explanations from those responsible for the forecast motivating our potential actions. Humans ultimately need to be able to defend their predictions, even if they come from “artificially intelligent partners” (AI programs). Topological data analysis offers to help scientists with this challenge, and do so in the familiar language of shapes.


[1] Machine Learning and Topological Data Analysis: Application to Pattern Classification in Fluid and Climate Simulations, by Vitaliy Kurlin and Grzegorz Muszynski from the University of Liverpool, plus Michael Wehner, Karthik Kashinath, and Prabhat from Lawrence Berkeley National Laboratory, presented at the Big Data Summit.

[2] Number 10 on the TOP500.org when the work was done, now #12 as of the November 2018 list.

James Reinders is an HPC enthusiast and author of eight books with more than 30 years of industry experience, including 27 years at Intel Corporation (retired June 2016).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RIKEN Post-K Supercomputer Named After Japan’s Tallest Peak

May 23, 2019

May 23 -- RIKEN President Hiroshi Matsumoto announced that the successor to the K computer will be named Fugaku, another name for Mount Fuji, which is the tallest mountain peak in Japan. Supercomputer Fugaku, developed b Read more…

By Tiffany Trader

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or rent a phishing kit and start attacking – or it can be done Read more…

By Doug Black

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Who’s Driving Your Car?

Delivering a fully autonomous driving (AD) vehicle remains a key priority for both manufacturers and technology firms (“firms”). However, passenger safety is now a top-of-mind concern due in great part, to fatalities resulting from driving tests over the past years. Read more…

TACC’s Upgraded Ranch Data Storage System Debuts New Features, Exabyte Potential

May 22, 2019

There's a joke attributed to comedian Steven Wright that goes, "You can't have everything. Where would you put it?" Users of advanced computing can likely relate to this. The exponential growth of data poses a steep challenge to efforts for its reliable storage. For over 12 years, the Ranch system at the Texas Advanced Computing Center... Read more…

By Jorge Salazar, TACC

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or re Read more…

By Doug Black

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This