Extreme Scale HPC: How Western Digital Corporation leveraged the virtually unlimited HPC capacity on AWS in their quest to speed up innovation and build better products

By Bala Thekkedath - Global HPC Marketing Lead, Amazon Web Services

December 10, 2018

Recently, AWS and Western Digital embarked on a very fun, challenging project of evaluating the impact of running their electro-magnetic simulations on a massive HPC cluster built on AWS using Amazon EC2 Spot Instances.   The lessons we learned and the results we were able to prove are very interesting and I am excited to share a quick overview here.

One of the biggest advantages of moving your HPC workloads to AWS is the ability to achieve extreme scales in terms of capacity and configurations – without a lot of upfront investment and heartache over long term commitments.  If you work for an organization that has moved HPC workloads to the cloud or has at least started the process by bursting to the cloud when demand spikes, you have experienced the agility and flexibility benefits afforded by the cloud.  You either have an individual account to access and request resources in the cloud or you request it via your HPC admin.  In both cases, you start building “your” cluster when you are ready. In most cases the cluster is built automatically by your job scheduler as you submit your jobs, and compute resources are ready within minutes. When the jobs are done, you shut down your cluster and stop paying for it.  When you request your cluster, unlike your on-premises environment, you can specify what type of CPUs (or GPUs, or FPGAs) you would like to run a particular application on.  Ever wonder how much faster your application would run if you had the latest CPU or GPU?  What if you wanted to determine if an I/O bandwidth optimized configuration versus CPU was better for parts of your workflow?   Well, now you can try many different configuration types without going through a cumbersome procurement process.  It becomes incredibly easy to fine tune specific portions of your HPC workflow, given the many different instance types available, and how easy it is to drop them into a workflow.   Then, there is the scale.   It does not matter if you request 1,000 cores for 8-hours or 8,000 cores for 1-hour.  You still pay the same.   So, if your application supports it, why not scale up your resources and get to results faster?

That is exactly what a recent collaborative project between AWS and Western Digital did.  First, a quick overview of the hard disk drive (HDD) market.  The HDD market is an extremely competitive one.  The ever-increasing demand for capacity from enterprises, particularly large hyper-scale data centers (like us) has been keeping Western Digital very busy.  Faced with the need to innovate to meet the growing demand for data storage capacity, the engineering teams at Western Digital are always pushing the limits of physics and engineering.  Enterprise HDDs are still confined to a 3.5 inches form factor (as they have been for years) with no chance to increase the size to accommodate additional capacity and performance requirements.  So, the only solution to meeting the increased capacity demands is to cram more bits into the same space and make sure the drives can handle the increasing demands for performance.  The technical term here is increasing the areal density of the media – meaning, keep on shrinking the geometry that you are allowed to use to capture the ones and zeros on the rotating media.  As you shrink those geometries, there are various aspects of cross talk, noise and atomic behavior that you have to comprehend to get to an ingredient combination that works 24x7x365, and can be manufactured at high volume. It is quite an art and science to get all those things to line up exactly, make it repeatable, make it manufacturable, make it operational, and, oh, by the way, get it to work for years without a failure.

A big focus of the engineering simulations work at Western Digital is to evaluate different combinations of technologies and/or solutions (or ingredients that make up the solutions) that goes into making new HDDs.  The basic design of the hard disk involves a rotating media and a head on a slider arm that moves over the media.  The engineering teams are looking at smaller and smaller geometries of recording channels on the media so they can fit more and more 1’s and 0’s or bits into the same space.  They are looking to achieve faster read and write times from that media.  The simulations thus involve many variable vectors to find the right combination of media, speed of rotation of the media, materials that constitute the media etc. that can provide that higher density and faster read-write times.   The end goal is to determine which combinations work and which don’t – and making sure those combinations that don’t work are avoided in the manufacturing process or in solutions/component recipes for the physical products.

As part of this precedent-setting collaborative work, Western Digital ran around 2.3 million simulation jobs on a Spot-based cluster of a little over one million vCPUs.   If they were to do those same 2.3 million simulations on a standard Spot based cluster of 16,000 vCPUs at a time (as they do today), it would have taken them about 20 days to get the same work done.     The idea of doing 20 days of work in 8 hours is a game changer.  The impacts go beyond the traditional business metrics – it is a great competitive advantage for a business that is driven by innovation.

So, what goes into scaling an application to run on extreme capacity infrastructure?  It is a coordinated effort between the application engineers, the infrastructure engineers, and the team at AWS.    At a 10K ft level, what we are doing here is taking a large statistical simulation, splitting it into jobs that run on a single vCPU, then when the jobs are done, bringing it all back and collating the results.   That requires work on both the application side and the infrastructure side.  The application has to ensure that the individual simulations are all done correctly, the infrastructure has to coordinate jobs across a vast number of servers/cores and bring all the data back to collate. What made this run even more interesting is that we used EC2 Spot instances, so the application had to be resilient for any job preemption or interruption that might happen. During the 8 hours run at the full one million vCPU scale, we experienced less than 1% of interruption. From an infrastructure point of view, we had to evaluate the limits that exists on number of underlying services (compute, storage, API calls) and since this was a cluster that was run all in a single region, but spanned multiple Availability Zones, we combined the features of AWS Spot Fleet with the highly-scalable cluster management and scheduling of Univa NavOps and GridEngine to coordinate cluster management across the wide capacity of our infrastructure and keep the cluster fully utilized even under such very high workload.

A few other points that are worth highlighting here.  First, Western Digital, Univa and AWS were able to fully exploit the configuration flexibility that running HPC workloads on the cloud offers.  Before embarking on this simulation, the engineers from both AWS and Western Digital spent a lot of prep time profiling the various instance types that Amazon EC2 offers. Through profiling this multitude of instance types (over 25 different instances types), we were able to land on the most optimal range of instances offering AVX acceleration for this workload, giving the AWS Spot Fleet the flexibility and freedom to find the cheapest and fastest hardware for the job.   Second, this simulation was also a major achievement in terms of the use of containers to run HPC workloads.  In this run, the entire application was ported onto containers, which is a big shift from having to haul around drivers and dependencies across jobs and VMs.   This run actually might have been one of the largest container fleets running a single application! Third, we used Amazon Simple Storage Service (Amazon S3) as the storage back-end for this simulation.  Being able to support this fast rate of data access at such massive scales required no tuning effort, as S3 bandwidth scaled gracefully and peaked at 7500 PUT/s.  And last, but not the least, this was a great example of how Spot Fleet can simplify cluster management.  In this particular case, we just had three Spot Fleet requests simultaneously and we were able to hit a million cores in the cluster in around 1 hour and 32 minutes!

To learn more, visit https://aws.amazon.com/hpc or reach out to your local AWS representative.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This