Extreme Scale HPC: How Western Digital Corporation leveraged the virtually unlimited HPC capacity on AWS in their quest to speed up innovation and build better products

By Bala Thekkedath - Global HPC Marketing Lead, Amazon Web Services

December 10, 2018

Recently, AWS and Western Digital embarked on a very fun, challenging project of evaluating the impact of running their electro-magnetic simulations on a massive HPC cluster built on AWS using Amazon EC2 Spot Instances.   The lessons we learned and the results we were able to prove are very interesting and I am excited to share a quick overview here.

One of the biggest advantages of moving your HPC workloads to AWS is the ability to achieve extreme scales in terms of capacity and configurations – without a lot of upfront investment and heartache over long term commitments.  If you work for an organization that has moved HPC workloads to the cloud or has at least started the process by bursting to the cloud when demand spikes, you have experienced the agility and flexibility benefits afforded by the cloud.  You either have an individual account to access and request resources in the cloud or you request it via your HPC admin.  In both cases, you start building “your” cluster when you are ready. In most cases the cluster is built automatically by your job scheduler as you submit your jobs, and compute resources are ready within minutes. When the jobs are done, you shut down your cluster and stop paying for it.  When you request your cluster, unlike your on-premises environment, you can specify what type of CPUs (or GPUs, or FPGAs) you would like to run a particular application on.  Ever wonder how much faster your application would run if you had the latest CPU or GPU?  What if you wanted to determine if an I/O bandwidth optimized configuration versus CPU was better for parts of your workflow?   Well, now you can try many different configuration types without going through a cumbersome procurement process.  It becomes incredibly easy to fine tune specific portions of your HPC workflow, given the many different instance types available, and how easy it is to drop them into a workflow.   Then, there is the scale.   It does not matter if you request 1,000 cores for 8-hours or 8,000 cores for 1-hour.  You still pay the same.   So, if your application supports it, why not scale up your resources and get to results faster?

That is exactly what a recent collaborative project between AWS and Western Digital did.  First, a quick overview of the hard disk drive (HDD) market.  The HDD market is an extremely competitive one.  The ever-increasing demand for capacity from enterprises, particularly large hyper-scale data centers (like us) has been keeping Western Digital very busy.  Faced with the need to innovate to meet the growing demand for data storage capacity, the engineering teams at Western Digital are always pushing the limits of physics and engineering.  Enterprise HDDs are still confined to a 3.5 inches form factor (as they have been for years) with no chance to increase the size to accommodate additional capacity and performance requirements.  So, the only solution to meeting the increased capacity demands is to cram more bits into the same space and make sure the drives can handle the increasing demands for performance.  The technical term here is increasing the areal density of the media – meaning, keep on shrinking the geometry that you are allowed to use to capture the ones and zeros on the rotating media.  As you shrink those geometries, there are various aspects of cross talk, noise and atomic behavior that you have to comprehend to get to an ingredient combination that works 24x7x365, and can be manufactured at high volume. It is quite an art and science to get all those things to line up exactly, make it repeatable, make it manufacturable, make it operational, and, oh, by the way, get it to work for years without a failure.

A big focus of the engineering simulations work at Western Digital is to evaluate different combinations of technologies and/or solutions (or ingredients that make up the solutions) that goes into making new HDDs.  The basic design of the hard disk involves a rotating media and a head on a slider arm that moves over the media.  The engineering teams are looking at smaller and smaller geometries of recording channels on the media so they can fit more and more 1’s and 0’s or bits into the same space.  They are looking to achieve faster read and write times from that media.  The simulations thus involve many variable vectors to find the right combination of media, speed of rotation of the media, materials that constitute the media etc. that can provide that higher density and faster read-write times.   The end goal is to determine which combinations work and which don’t – and making sure those combinations that don’t work are avoided in the manufacturing process or in solutions/component recipes for the physical products.

As part of this precedent-setting collaborative work, Western Digital ran around 2.3 million simulation jobs on a Spot-based cluster of a little over one million vCPUs.   If they were to do those same 2.3 million simulations on a standard Spot based cluster of 16,000 vCPUs at a time (as they do today), it would have taken them about 20 days to get the same work done.     The idea of doing 20 days of work in 8 hours is a game changer.  The impacts go beyond the traditional business metrics – it is a great competitive advantage for a business that is driven by innovation.

So, what goes into scaling an application to run on extreme capacity infrastructure?  It is a coordinated effort between the application engineers, the infrastructure engineers, and the team at AWS.    At a 10K ft level, what we are doing here is taking a large statistical simulation, splitting it into jobs that run on a single vCPU, then when the jobs are done, bringing it all back and collating the results.   That requires work on both the application side and the infrastructure side.  The application has to ensure that the individual simulations are all done correctly, the infrastructure has to coordinate jobs across a vast number of servers/cores and bring all the data back to collate. What made this run even more interesting is that we used EC2 Spot instances, so the application had to be resilient for any job preemption or interruption that might happen. During the 8 hours run at the full one million vCPU scale, we experienced less than 1% of interruption. From an infrastructure point of view, we had to evaluate the limits that exists on number of underlying services (compute, storage, API calls) and since this was a cluster that was run all in a single region, but spanned multiple Availability Zones, we combined the features of AWS Spot Fleet with the highly-scalable cluster management and scheduling of Univa NavOps and GridEngine to coordinate cluster management across the wide capacity of our infrastructure and keep the cluster fully utilized even under such very high workload.

A few other points that are worth highlighting here.  First, Western Digital, Univa and AWS were able to fully exploit the configuration flexibility that running HPC workloads on the cloud offers.  Before embarking on this simulation, the engineers from both AWS and Western Digital spent a lot of prep time profiling the various instance types that Amazon EC2 offers. Through profiling this multitude of instance types (over 25 different instances types), we were able to land on the most optimal range of instances offering AVX acceleration for this workload, giving the AWS Spot Fleet the flexibility and freedom to find the cheapest and fastest hardware for the job.   Second, this simulation was also a major achievement in terms of the use of containers to run HPC workloads.  In this run, the entire application was ported onto containers, which is a big shift from having to haul around drivers and dependencies across jobs and VMs.   This run actually might have been one of the largest container fleets running a single application! Third, we used Amazon Simple Storage Service (Amazon S3) as the storage back-end for this simulation.  Being able to support this fast rate of data access at such massive scales required no tuning effort, as S3 bandwidth scaled gracefully and peaked at 7500 PUT/s.  And last, but not the least, this was a great example of how Spot Fleet can simplify cluster management.  In this particular case, we just had three Spot Fleet requests simultaneously and we were able to hit a million cores in the cluster in around 1 hour and 32 minutes!

To learn more, visit https://aws.amazon.com/hpc or reach out to your local AWS representative.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterized as transforming data into insights – which is exactly wh Read more…

By James Reinders

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This