Extreme Scale HPC: How Western Digital Corporation leveraged the virtually unlimited HPC capacity on AWS in their quest to speed up innovation and build better products

By Bala Thekkedath - Global HPC Marketing Lead, Amazon Web Services

December 10, 2018

Recently, AWS and Western Digital embarked on a very fun, challenging project of evaluating the impact of running their electro-magnetic simulations on a massive HPC cluster built on AWS using Amazon EC2 Spot Instances.   The lessons we learned and the results we were able to prove are very interesting and I am excited to share a quick overview here.

One of the biggest advantages of moving your HPC workloads to AWS is the ability to achieve extreme scales in terms of capacity and configurations – without a lot of upfront investment and heartache over long term commitments.  If you work for an organization that has moved HPC workloads to the cloud or has at least started the process by bursting to the cloud when demand spikes, you have experienced the agility and flexibility benefits afforded by the cloud.  You either have an individual account to access and request resources in the cloud or you request it via your HPC admin.  In both cases, you start building “your” cluster when you are ready. In most cases the cluster is built automatically by your job scheduler as you submit your jobs, and compute resources are ready within minutes. When the jobs are done, you shut down your cluster and stop paying for it.  When you request your cluster, unlike your on-premises environment, you can specify what type of CPUs (or GPUs, or FPGAs) you would like to run a particular application on.  Ever wonder how much faster your application would run if you had the latest CPU or GPU?  What if you wanted to determine if an I/O bandwidth optimized configuration versus CPU was better for parts of your workflow?   Well, now you can try many different configuration types without going through a cumbersome procurement process.  It becomes incredibly easy to fine tune specific portions of your HPC workflow, given the many different instance types available, and how easy it is to drop them into a workflow.   Then, there is the scale.   It does not matter if you request 1,000 cores for 8-hours or 8,000 cores for 1-hour.  You still pay the same.   So, if your application supports it, why not scale up your resources and get to results faster?

That is exactly what a recent collaborative project between AWS and Western Digital did.  First, a quick overview of the hard disk drive (HDD) market.  The HDD market is an extremely competitive one.  The ever-increasing demand for capacity from enterprises, particularly large hyper-scale data centers (like us) has been keeping Western Digital very busy.  Faced with the need to innovate to meet the growing demand for data storage capacity, the engineering teams at Western Digital are always pushing the limits of physics and engineering.  Enterprise HDDs are still confined to a 3.5 inches form factor (as they have been for years) with no chance to increase the size to accommodate additional capacity and performance requirements.  So, the only solution to meeting the increased capacity demands is to cram more bits into the same space and make sure the drives can handle the increasing demands for performance.  The technical term here is increasing the areal density of the media – meaning, keep on shrinking the geometry that you are allowed to use to capture the ones and zeros on the rotating media.  As you shrink those geometries, there are various aspects of cross talk, noise and atomic behavior that you have to comprehend to get to an ingredient combination that works 24x7x365, and can be manufactured at high volume. It is quite an art and science to get all those things to line up exactly, make it repeatable, make it manufacturable, make it operational, and, oh, by the way, get it to work for years without a failure.

A big focus of the engineering simulations work at Western Digital is to evaluate different combinations of technologies and/or solutions (or ingredients that make up the solutions) that goes into making new HDDs.  The basic design of the hard disk involves a rotating media and a head on a slider arm that moves over the media.  The engineering teams are looking at smaller and smaller geometries of recording channels on the media so they can fit more and more 1’s and 0’s or bits into the same space.  They are looking to achieve faster read and write times from that media.  The simulations thus involve many variable vectors to find the right combination of media, speed of rotation of the media, materials that constitute the media etc. that can provide that higher density and faster read-write times.   The end goal is to determine which combinations work and which don’t – and making sure those combinations that don’t work are avoided in the manufacturing process or in solutions/component recipes for the physical products.

As part of this precedent-setting collaborative work, Western Digital ran around 2.3 million simulation jobs on a Spot-based cluster of a little over one million vCPUs.   If they were to do those same 2.3 million simulations on a standard Spot based cluster of 16,000 vCPUs at a time (as they do today), it would have taken them about 20 days to get the same work done.     The idea of doing 20 days of work in 8 hours is a game changer.  The impacts go beyond the traditional business metrics – it is a great competitive advantage for a business that is driven by innovation.

So, what goes into scaling an application to run on extreme capacity infrastructure?  It is a coordinated effort between the application engineers, the infrastructure engineers, and the team at AWS.    At a 10K ft level, what we are doing here is taking a large statistical simulation, splitting it into jobs that run on a single vCPU, then when the jobs are done, bringing it all back and collating the results.   That requires work on both the application side and the infrastructure side.  The application has to ensure that the individual simulations are all done correctly, the infrastructure has to coordinate jobs across a vast number of servers/cores and bring all the data back to collate. What made this run even more interesting is that we used EC2 Spot instances, so the application had to be resilient for any job preemption or interruption that might happen. During the 8 hours run at the full one million vCPU scale, we experienced less than 1% of interruption. From an infrastructure point of view, we had to evaluate the limits that exists on number of underlying services (compute, storage, API calls) and since this was a cluster that was run all in a single region, but spanned multiple Availability Zones, we combined the features of AWS Spot Fleet with the highly-scalable cluster management and scheduling of Univa NavOps and GridEngine to coordinate cluster management across the wide capacity of our infrastructure and keep the cluster fully utilized even under such very high workload.

A few other points that are worth highlighting here.  First, Western Digital, Univa and AWS were able to fully exploit the configuration flexibility that running HPC workloads on the cloud offers.  Before embarking on this simulation, the engineers from both AWS and Western Digital spent a lot of prep time profiling the various instance types that Amazon EC2 offers. Through profiling this multitude of instance types (over 25 different instances types), we were able to land on the most optimal range of instances offering AVX acceleration for this workload, giving the AWS Spot Fleet the flexibility and freedom to find the cheapest and fastest hardware for the job.   Second, this simulation was also a major achievement in terms of the use of containers to run HPC workloads.  In this run, the entire application was ported onto containers, which is a big shift from having to haul around drivers and dependencies across jobs and VMs.   This run actually might have been one of the largest container fleets running a single application! Third, we used Amazon Simple Storage Service (Amazon S3) as the storage back-end for this simulation.  Being able to support this fast rate of data access at such massive scales required no tuning effort, as S3 bandwidth scaled gracefully and peaked at 7500 PUT/s.  And last, but not the least, this was a great example of how Spot Fleet can simplify cluster management.  In this particular case, we just had three Spot Fleet requests simultaneously and we were able to hit a million cores in the cluster in around 1 hour and 32 minutes!

To learn more, visit https://aws.amazon.com/hpc or reach out to your local AWS representative.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

AWS Arm-based Graviton3 Instances Now in Preview

December 1, 2021

Three years after unveiling the first generation of its AWS Graviton chip-powered instances in 2018, Amazon Web Services announced that the third generation of the processors – the AWS Graviton3 – will power all-new Amazon Elastic Compute 2 (EC2) C7g instances that are now available in preview. Debuting at the AWS re:Invent 2021... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies participated and, one of them, Graphcore, even held a separ Read more…

HPC Career Notes: December 2021 Edition

December 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

AWS Solution Channel

Running a 3.2M vCPU HPC Workload on AWS with YellowDog

Historically, advances in fields such as meteorology, healthcare, and engineering, were achieved through large investments in on-premises computing infrastructure. Upfront capital investment and operational complexity have been the accepted norm of large-scale HPC research. Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire