SDSC’s ‘Trestles’ Supercomputer Still Going Strong Three+ Years Later

By Jan Zverina

December 21, 2018

Supercomputers typically have a useful life of about five years, as these high-performance systems, many running 24/7, slowly succumb to burn-out – of their nodes, that is – as well as steady advances in processing technologies.

Not so with Trestles, which was acquired more than three years ago by the Arkansas High Performance Computing Center (AHPCC) at the University of Arkansas after entering service at the San Diego Supercomputer Center (SDSC) at UC San Diego in mid-2011 under a $2.8 million National Science Foundation (NSF) grant.

(L to R) AHPCC Director David Chaffin; Director of Strategic Initiatives & User Services Jeff Pummill; and Senior Administrator/Program Director Pawel Wolinski, with the Trestles supercomputer. Image courtesy of AHPCC

Billed as a “high-productivity workhorse,” Trestles was based on the concept that by tailoring a system for the majority of modest-scale jobs rather than a handful of researchers who run jobs at thousands of core counts, users could achieve higher throughput and increased scientific productivity.

While at SDSC, Trestles users spanned a wide range of domain applications, including astronomy, biophysics, climate science, computational chemistry, materials science, and more. It was also recognized as a leading platform for science gateway applications; for example, the system served more than 650 users per month via the popular CIPRES phylogenetics portal alone.

“It’s terrific that University of Arkansas researchers have been able to use Trestles for several years beyond its decommissioning as a national NSF resource and to extend the scientific impact of NSF’s HPC investments,” said Richard Moore, the principal investigator for the Trestles award and SDSC’s now-retired deputy director.

Trestles continues to deliver on that strategy today, more than three years into its “next life” as a valuable research resource at the U of A. AHPCC’s latest estimates are that during that time, Trestles has provided more than 136 million CPU hours of service, with over 804,000 jobs run among almost 200 active users.

Trestles came to us at a time where computational needs were peaking in the form of explosive growth and demand in the faculty researcher community,” said AHPCC Director of Strategic Initiatives & User Services Jeff Pummill, who is also a Trestles user in the area of multi-omics, primarily with the U of A’s Biological Sciences and Agricultural departments. “Queue wait times were getting unacceptably long and jobs were stacking up. So the arrival of 8000+ compute cores was a welcome sight for all of us.”

Pummill noted that architecturally, Trestles has been ideal for work in the areas of bioinformatics and genomics, as its software is typically Shared Memory Parallel (SMP), which uses multiple processors on the same computer, as opposed to Distributed Memory Parallel (DMP), which uses multiple processors on either the same or multiple computers. “Trestles’ nodes are configured with 32 compute cores and 64 gigs of memory, which is ideal for smaller bacterial genome work, but useful for many aspects of larger eukaryotic genome work,” he added.


What’s in a name? Some Trestles Trivia

After being transferred to the Arkansas High Performance Computing Center, it was decided to keep the Trestles name. But why Trestles in the first place?

“I was taking up surfing at the time we proposed this system to the NSF, and thought that the Trestles Bridge in San Diego would be a nice way to acknowledge both the local aspect of the system, as well as the idea that it was a bridge to using high-performance computing,” according to Shawn Strande, SDSC’s deputy director.


Research Highlights

Some examples of research projects using Trestles at the U of A include:

  • Materials Engineering: A research team including Salvador Barraza-Lopez, associate professor of physics at the U of A, and Taneshwor Kaloni, a former post-doctoral researcher in Barraza-Lopez’s lab, shed light on the behavior of one of ultrathin materials known as tin telluride (SnTe). The study detailing their findings was published in the journal Advanced Materials.
  • Neurosciences: Vidit Agrawal, a graduate student in the U of A’s Physics Department has been using Trestles to perform simulations of large neural networks and conduct a statistical analysis on experimental results.
  • Supply chain analysis: Agrawal has also used Trestles to investigate the structural fragility of supply networks and explore its relationship with a firm’s equity risk. “AHPCC has been of great help to me as it has cut down my overall computation time from months to days.”
  • Microbiome research: Jiangchao Zhao, an assistant professor with the U of A’s Department of Animal Science, used Trestles to identify gut microbiome signatures that when associated with longevity provides a promising modulation target for healthy aging.

Additional research projects can be found here.

Re-use, Not Recycling

While many supercomputers still end up on the scrap heap, the continued operation of Trestles beyond its expected lifespan is just one example of lasting computational power and productivity.

In early 2017, SDSC and the Simons Foundation’s Flatiron Institute in New York reached an agreement under which the majority of SDSC’s data-intensive Gordon supercomputer would be used by Simons for ongoing research following completion of the system’s tenure as a NSF resource on March 31 of that year, following five years of service. While Gordon is now primarily used by the Simons Foundation, the system remains housed in SDSC’s data center.

“It’s very gratifying to see SDSC’s HPC systems continue to serve a wide range of researchers following their NSF tenures,” said SDSC Director Michael Norman. “For us, it’s testimony to designing a robust architecture from the start, which contributes to their useful lives well beyond what’s typical for such systems.”

In early 2018, the NSF extended the use of SDSC’s current petascale system, Comet, for a sixth year of service, into March of 2021. Comet is now one of the most widely used supercomputers in the NSF’s XSEDE program. Under a separate NSF award valued at about $900,000 SDSC recently doubled the number of graphic processing units (GPUs) on Comet in direct response to growing demand for GPU computing among a wide range of research domains.

About AHPCC

The Arkansas High Performance Computing Center, a core research facility under the Office of Research and Innovation at the University of Arkansas and founded in 2008, supports research for about 260 users in about 30 academic areas across the University of Arkansas campus, including bioinformatics, condensed matter physics, integrated nanoscience, computational chemistry, computational biomagnetics, materials science, spatial science, and economics among others.

About SDSC

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. SDSC’s petascale Comet supercomputer is a key resource within the National Science Foundation’s XSEDE (eXtreme Science and Engineering Discovery Environment) program.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a variety of observatories and astronomers – but when COVID Read more…

By Oliver Peckham

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with the enterprise strengths of its recent acquisitions, notably Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Preparing for Exascale Science on Day 1

October 14, 2020

Science simulation, visualization, data, and learning applications will greatly benefit from the massive computational resources available with future exascal Read more…

By Linda Barney

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This