The Case Against ‘The Case Against Quantum Computing’

By Ben Criger

January 9, 2019

Editor’s note: In this contributed piece, Ben Criger, a post-doctoral researcher at QuTech, part of the TU Delft in the Netherlands, responds to criticisms of quantum computing and offers an explanation for why such criticisms tend to garner a lot of attention.

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourself – and you are the easiest person to fool.” This maxim motivates us to be critical of our research, even if we’re more critical when it comes to the research of others. From time to time, we even look through journals and technical magazines for arguments against the things we’re trying to do.

Last month, while I was looking for some nice criticism of quantum computing, I had the opportunity to read an article called “The Case Against Quantum Computing,” written by Mikhail Dyakonov, in IEEE Spectrum. While I was reading, I noticed two things that seemed out of the ordinary. First, all of the physics-based criticism of quantum computing was wrong, or had been addressed twenty years ago when the field was starting. The second, and perhaps more important thing, is that I could see the appeal of the article, despite its technical deficiencies.

I noticed that this article had been reviewed on the 27th of November by John Russell, here in HPCwire, so I thought that this would also be a good forum for a rebuttal (many thanks to Tiffany Trader for giving me the opportunity to write one). In the following sections, I’m going to go over two of the main technical points that Dyakonov makes, and try to give people a better idea about where we’re at in quantum computing. I’ll conclude with a comment on the article’s appeal.

Precision in Computing

Dyakonov: “A useful quantum computer needs to process a set of continuous parameters that is larger than the number of subatomic particles in the observable universe.”

No computer, classical or quantum, ever has to process even a single continuous parameter. In classical computers, we can use floating-point arithmetic to approximate continuous parameters using a finite number of bits. Most of the time, we can even manage to do it to within the desired relative precision, in order to avoid catastrophic error propagation. This is because the number of numbers which we can express using a floating-point type scales exponentially with the number of bits.

Normally, I wouldn’t belabour this point so heavily, but I’m going to do the “quantum” version of this in a minute, so let’s take a look at an animation of floating-point representations in action:

Here, I’m writing out all numbers of the form (−1)base sign×significand× 10((−1)exp sign∗exponent), when the variables significand and exponent are each n-bit integers. Now, I can’t plot the whole real line (my monitor isn’t wide enough), so I’ve used a Riemann projection, drawing a ray from the center of the semi-circle shown above to the point on the real line that I’d like to show, and instead showing where that ray intersects the semi-circle, like so:


If we begin with 0 bits in the significand and exponent, we can assign any value we like to the sign bits, and the only number we can represent is 0. There are four independent ways, therefore, to represent 0, so there’s a little inefficiency in the representation. However, by the time I get up to 9 bits each in the significand and exponent, all of the points plotted are overlapping, and it’s clear that I have enough precision for the task at hand, for any real number I care to approximate.

A similar result holds in quantum computing, though the ‘data type’ we’ll consider here is a single qubit’s state, rather than a real number. The continuous complex parameters α and β mentioned by Professor Dyakonov go in a length two vector:

These parameters can also be mapped to angles θ and φ on the Bloch sphere, like so:

α = cos(θ/2)        β = esin(θ/2)

(exercise for the reader: show that the state |0>, with α = 1 and β = 0, sits at the North Pole).

The operations we can apply in quantum computing are unitary matrices, equivalent to rotations of the Bloch sphere. For a single qubit, these matrices have two rows and two columns. Now, in fault-tolerant quantum computing, the operations which we can implement with arbitrarily low (but not exactly zero) error rates are limited to a discrete set. Let’s suppose for the sake of example, that there are two, and that they’re called H and T. Furthermore, let’s suppose that we only know how to initialise a single fixed state of our fault-tolerant qubit, the |0> state. How many qubit states can we reach with a string of Hs and Ts of fixed length n? Again, just as in floating-point arithmetic, the number of sequences I can generate scales exponentially with respect to the length of the sequence, despite a few collisions at low n (for example, HH |0> = |0>):

This animation doesn’t look quite as nice as the last one. There’s a lot more space to cover on the sphere than there is on the semi-circle that we used for floating-point arithmetic. From this, we can conclude that quantum computing is harder than classical computing, though I suspect that this does not come as a surprise.

Now, this isn’t the only thing fundamentally wrong with quantum computing, according to Professor Dyakonov. According to him, the entire discussion above is irrelevant, since imprecision and error will inevitably ruin any large-scale quantum computation before we can even think about stringing our Hs and Ts together. This is probably also not a surprise, but this was one of the first big problems that was ever solved in quantum computing, and I’ll talk about it a bit in the following section.

The Threshold Theorem

Dyakonov: “Indeed, [scientists studying quantum computing] claim that something called the threshold theorem proves it can be done. They point out that once the error per qubit per quantum gate is below a certain value, indefinitely long quantum computation becomes possible, at a cost of substantially increasing the number of qubits needed. With those extra qubits, they argue, you can handle errors by forming logical qubits using multiple physical qubits.”

The threshold theorem, initally proven by Aharonov and Ben-Or, has been around for about twenty years. The proof itself is in a 63-page paper, but the basic qualitative argument is relatively easy to grasp in a few paragraphs. At the cost of oversimplifying things, I’ll try to summarise that argument here.

Let’s define a logical gate as a small quantum computation that uses a number of physical gates acting on encoded states to simulate the effect of a single physical quantum logic gate acting on an unencoded state. Some logical gates can be made fault-tolerant by adding quantum error correction subroutines. The function of these subroutines is to correct the failure of a small number (typically one) of the physical quantum logic gates included in either the logical gate, or the error correction subroutines themselves. Each of these gadgets (that’s the technical term) contains a certain number of physical gates, let’s call it G. Also, let’s assume that, if any pair of these gates does something unanticipated, that the whole thing fails. When, then, does such a circuit have a low error probability? Let’s suppose, for the sake of simplicity, that each physical gate fails with probability p. The probability of error for the fault-tolerant gadget is , and whenever that’s less than p, we’re in business.

Now,  may not be a low enough probability of error for a given computation. In that case, we take advantage of something called concatenation, which is where you replace every physical gate in a fault-tolerant logical gate with yet another fault-tolerant logical gate, as depicted below:

If we use l levels of this concatenation, the number of gates we need to execute scales exponentially in l, but (very importantly) the final probability of error is p2l [ed. note: p^2^l] so it’s doubly-exponentially suppressed.

If this sounds clunky and inefficient to you, you’d be more or less right. The important thing for this initial proof of concept was not that the scheme be particularly efficient, but that it use simple ideas which could be widely understood. Over the past twenty years, a small community of quantum computing researchers have been concerned with finding more efficient schemes, with fewer gates, and the ability to tolerate higher error rates, and the results have been fairly positive. They’ve also been hard at work proving that quantum computing can still be made fault-tolerant if the errors are correlated, rather than independent, as I’ve assumed above (though Aharonov and Ben-Or consider weak correlations in their original work).

During this time, people like Mikhail Dyakonov (and Gil Kalai, and other noted skeptics of quantum computing) have been career researchers. If the theorem were false, we’d expect one of these skeptics, or someone they’ve inspired, to have proven that it was false, or to show that physically-reasonable correlated noise precludes quantum computing. They have not done this. Instead, Dyakonov has loosely suggested that the theorem is false, without a direct statement, or evidence. I, for one, think that the theorem is more or less correct, and that quantum computing is possible.

These are the official fact-based rebuttals that we physicists rely on when confronted with critiques from Dyakonov and the other scientists and engineers who believe that quantum computing is doomed for some reason or another. They’ve been used before, and I suspect that they’ll be used again. In one sense, they’re perfectly sufficient, but I don’t think they’ve addressed the core problem. Dyakonov’s critiques are unfounded, and yet they endure. Why?

The Important Question

So, why was Dyakonov’s article written? Why was it published? I hope I’ve argued adequately that there’s not a lot of science behind it, so why is it so appealing?

I think this article was published because, in a sense we don’t often talk about, it’s correct. People who study quantum computing don’t view it as our responsibility to oppose the unjustified hype building up in the popular press. Times are tough for scientists in every field, as the budgets for those funding agencies Dyakonov mentions dwindle. There’s a temptation not to rock the boat, especially when the critics we do have don’t do a great job of challenging us on technical grounds.

We lament the lack of well-founded criticism, but how often, and how loudly, do we lament the abundance of unfounded optimism? Are these two things not equally dangerous to the progress of science? We’re the people best able to criticise quantum computing, is it then our responsibility to do so?

So far, we’ve left editors with little selection when they look for something to stem the tide of breathless proclamations about how quantum computing is going to solve everything. We often lament the lack of good critiques of quantum computing, but in the end, the only chance we have to elevate the level of criticism is to do it ourselves.

About the Author

Ben is a post-doctoral researcher at QuTech, part of the TU Delft in the Netherlands. His research is focused on near-term implementations of fault-tolerant quantum computing. He can be reached via Twitter (@BenCriger) and GitHub ( Scripts producing the animations in this article can be found at

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ISC21 Cluster Competition Bracketology

June 18, 2021

For the first time ever, cluster competition experts have gathered together for an actual seeding reveal for the ISC21 Student Cluster Competition. What’s this, you ask? It’s where bona fide student cluster competi Read more…

OSC Enables On-Demand HPC for Automotive Engineering Firm

June 18, 2021

In motorsports, vehicle designers are constantly looking for the tiniest sliver of time to shave off through some clever piece of engineering – but as the low-hanging fruit gets snatched up, those advances are getting Read more…

PNNL Researchers Unveil Tool to Accelerate CGRA Development

June 18, 2021

Moore’s law is in decline due to the physical limits of transistor chips, putting an expiration date on a hitherto-perennial exponential trend in computing power – and leaving hardware developers scrambling to contin Read more…

TU Wien Announces VSC-5, Austria’s Most Powerful Supercomputer

June 17, 2021

Austria is getting a new top supercomputer: VSC-5, the latest iteration of the Vienna Scientific Cluster. The news was announced by VSC-5’s soon-to-be home, TU Wien (also known as the Vienna University of Technology). Read more…

Supercomputing Helps Advance Hydrogen Energy Research

June 16, 2021

Hydrogen energy has long remained an elusive target of the renewable energy industry, promising clean, carbon-free energy that would allow for rapid refueling, unlike current battery-based electric vehicles. Hydrogen-bas Read more…

AWS Solution Channel

Accelerating research and development for new medical treatments

Today, more than 290,000 researchers in France are working to provide better support and care for patients through modern medical treatment. To fulfill their mission, these researchers must be equipped with powerful tools. Read more…

FF4EuroHPC Initiative Highlights Results of First Open Call

June 16, 2021

EuroHPC is kicking into high gear, with seven of its first eight systems detailed – and one of them already operational. While the systems are, perhaps, the flashiest endeavor of the European Commission’s HPC effort, Read more…

ISC21 Cluster Competition Bracketology

June 18, 2021

For the first time ever, cluster competition experts have gathered together for an actual seeding reveal for the ISC21 Student Cluster Competition. What’s t Read more…

TU Wien Announces VSC-5, Austria’s Most Powerful Supercomputer

June 17, 2021

Austria is getting a new top supercomputer: VSC-5, the latest iteration of the Vienna Scientific Cluster. The news was announced by VSC-5’s soon-to-be home, T Read more…

Catching up with ISC 2021 Digital Program Chair Martin Schulz

June 16, 2021

Leibniz Research Centre (LRZ)’s content creator Susanne Vieser interviews ISC 2021 Digital Program Chair, Prof. Martin Schulz to gain an understanding of his ISC affiliation, which is outside his usual scope of work at the research center and the Technical University of Munich. Read more…

Intel Debuts ‘Infrastructure Processing Unit’ as Part of Broader XPU Strategy

June 15, 2021

To boost the performance of busy CPUs hosted by cloud service providers, Intel Corp. has launched a new line of Infrastructure Processing Units (IPUs) that take Read more…

ISC Keynote: Glimpse into Microsoft’s View of the Quantum Computing Landscape

June 15, 2021

Looking for a dose of reality and realistic optimism about quantum computing? Matthias Troyer, Microsoft distinguished scientist, plans to do just that in his ISC2021 keynote in two weeks – Quantum Computing: From Academic Research to Real-world Applications. He notes wryly that classical... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers


10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from I Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

  • arrow
  • Click Here for More Headlines
  • arrow