IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

By John Russell

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s existing 20-quibit platform into a more robust, self-contained “package” embodying what will be required as quantum computers move from the lab to the workplace. System One’s glass enclosure is not only cool-looking but also a Faraday cage. Big Blue also announced expansion of the IBM Q Network of quantum collaborators – ExxonMobil, CERN, and Argonne National Laboratory are among the new members – and plans to open the first IBM Q Quantum Computation Center in Poughkeepsie, NY, this year.

Rolling out the QC news at the Consumer Electronics Show may seem an odd choice, but then quantum computing is a little odd, and CES seems to be broadening from a consumer gadget extravaganza into a more expansive IT showcase. Regardless, the latest quantum news reflects Big Blue’s steady long-term effort not only to advance quantum computing research but also to push quantum computing towards commercialization and practical use. IBM is calling the new system, the ‘world’s first integrated quantum computer.’

“This project was begun over a year ago. We wanted to take a systems design approach to building a quantum computer. The goal of System One was to build a machine with a software stack that was automated in a way that we would do on a traditional machine, and we have all of the means of self-calibration, and the special purpose-built electronics to control the qubits and read them out,” said Bob Wisnieff, CTO quantum computing, IBM Research.

“You want to keep the overall system performing as stably as possible. [Final assembly and testing occurred] in October and November and it is it online now. Users have been using it for the last three or four weeks,” he said. This Q System One is located at the Thomas J Watson Research Center in Yorktown Heights, NY. A second will be installed at the new Poughkeepsie center.

IBM Q System One is comprised of a number of custom components that work together including:

  • Quantum hardware designed to be stable and auto-calibrated to give repeatable and predictable high-quality qubits;
  • Cryogenic engineering that delivers a continuous cold and isolated quantum environment;
  • High precision electronics in compact form factors to tightly control large numbers of qubits;
  • Quantum firmware to manage the system health and enable system upgrades without downtime for users; and
  • Classical computation to provide secure cloud access and hybrid execution of quantum algorithms.

One challenge being tackled is the need to maintain the quality of qubits used to perform quantum computations. As noted in the official announcement, “Powerful yet delicate, qubits quickly lose their special quantum properties, typically within 100 microseconds (for state-of-the-art superconducting qubits), due in part to the interconnected machinery’s ambient noise of vibrations, temperature fluctuations, and electromagnetic waves. Protection from this interference is one of many reasons why quantum computers and their components require careful engineering and isolation.”

Q System One’s new ‘package’ includes a nine-foot-tall, nine-foot-wide case of half-inch thick borosilicate glass “forming a sealed, airtight enclosure that opens effortlessly using “roto-translation,” a motor-driven rotation around two displaced axes engineered to simplify the system’s maintenance and upgrade process while minimizing downtime.”

Wisnieff noted, “We chose was a laminated glass such that the glass itself is able to absorb RF and at the top of the case there is metal so that it acts as an ideal Faraday cage with a ground plane above. You can think of it as we are creating a quality of space where we want to control all of the aspects that matter so the qubit can operate with the maximum success possible.”

A rendering of IBM Q System One, the world’s first fully integrated universal quantum computing system, currently installed at the Thomas J Watson Research Center. Source: IBM

Like all current quantum systems except for D-Wave’s, which can be purchased and located on-premise, IBM System Q One is meant to be accessed via the cloud. Wisnieff said the cloud paradigm is likely to be the dominant delivery mechanism for quantum computing for the foreseeable future. System Q One currently runs IBM’s fourth-generation, 20-quibit processor. Even though the system is designed to be more robust, and therefore a more reliable resource for IBM’s Q Network collaborators, Wisnieff suggests that keeping the system in-house will facilitate making upgrades in all areas.

In building the web-platform around System Q One, IBM has focused heavily on usability. Debugging, for example, is a particularly thorny issue because you can’t measure the state of a quantum system without changing it. Prior simulation of ‘quantum code’ run on traditional machines is necessary and may require specialized compute resources.

“You run a simulation of the algorithm on a conventional machine, [where] it is perfectly legal for me know to probe the state of the system to understand exactly what is going on. We’ve learned there’s a ten-to-one simulation to actual quantum run [typically] required,” he said. “We have a number of specialized simulators available. We refer to them as different back ends. So when users submit their codes, they specify the back end that they want to run on, depending upon what aspect of the system they are interested in testing.”

It’s hoped that eventually much of the underlying complexity of quantum computing (system behavior, non-intuitive algorithms, quantum coding) can be abstracted and hidden from domain scientists.

“We’re certainly not ready to do that across the board yet,” said Wisnieff. “One of the things we have already done is in quantum chemistry where we have allowed people to use the data files and data formats that typically would have been submitted to conventional tools to do quantum chemistry calculations. They can submit the same job to a conventional tool like a supercomputer or take that job and move it onto a quantum computer.

“Longterm, that’s exactly the way that you want that hierarchical abstraction to exist so that researchers feel they are using this as a resource and interchangeable to a certain degree in terms of how you submit jobs. Quantum chemistry turns out to be a great place for us to begin experiment with how we might do that,” he said.

Nearer-term, the goal everyone is chasing – besides just developing better and bigger (more qubits) machines – is quantum advantage; that’s the ability use quantum computers do something sufficiently better than classical machines to make the effort worthwhile. “We think there’s a high probability that next several years we are going to begin to find algorithms that we can implement on machines that we can build that will provide some advantage,” said Wisnieff.

In the meantime, the number of collaborators signing on with IBM to develop and use quantum computers is growing. The other portion of IBM’s CES announcements dealt with expansion of the IBM Q Network which IBM describes as “the world’s first community of Fortune 500 companies, startups, academic institutions and research labs working with IBM to advance quantum computing and explore practical applications for business and science.”

Organizations joining the IBM Q Network include:

  • ExxonMobil, the first energy company to join the network, “will explore how quantum computing may address computationally challenging problems across a variety of applications. Quantum computing could more effectively solve large systems of linear equations, which will accelerate the development of more realistic simulations. Potential applications include optimizing a country’s power grid, more predictive environmental and highly accurate quantum chemistry calculations to enable the discovery of new materials for more efficient carbon capture.”
  • CERN, the European Laboratory for Particle Physics, “will work with IBM to explore how quantum computing may be used to advance scientific understanding of the universe. The project will bring together IBM and CERN scientists to investigate how to apply quantum machine learning techniques to classify collisions produced at the Large Hadron Collider, the world’s largest and most powerful particle accelerator.”

“These organizations will work directly with IBM scientists, engineers and consultants to explore quantum computing for specific industries. They will have cloud-based access to IBM Q systems, as they work to discover real-world problems that may be solved faster or more efficiently with a quantum computer versus a classical computer,” said Bob Sutor, vice president, IBM Q Strategy and Ecosystem.

The IBM Q Network provides its member organizations with quantum expertise and resources, quantum software and developer tools, as well as cloud-based access to IBM’s scalable commercial universal quantum computing systems available.

A subset of sorts to the IBM Q Network is IBM Q Hubs organization – you can see how hard IBM is working the IBM Q brand for its entire quantum ‘product’ line. The hubs are part of the IBM Q Network and have access to the IBM Q commercial systems, over the cloud, and focus on quantum computing education, research, development, and implementation.

“Many of our Hubs are government labs and universities. Part of their mission, too, is to partner with industry. The Hub at Keio University was the first to add members in 2017,” said IBM spokesman Chris Nay. The Oak Ridge National Laboratory’s IBM Q Hub, announced in 2017, recently added Argonne, Lawrence Berkeley, and Fermilab. “This group has a more government/academic flavor although IBM encourages its members to work with industry as well,” said Nay.

Here’s IBM’s description of current ORNL hub members and their areas of focus:

  • Argonne National Laboratory “will develop quantum algorithms to help tackle challenges in chemistry and physics. New algorithms will also be used to model and simulate quantum network architectures and develop hybrid quantum-classical architectures, which combine the power of quantum processors with Argonne’s world-class supercomputing resources. Membership in the IBM Q hub will enable Argonne researchers to leverage their expertise in scalable algorithms across a broad set of multidisciplinary scientific applications and explore the impact of quantum computing on key areas including quantum chemistry and quantum materials.”
  • “Fermilab “will use quantum computers for machine learning to classify objects in large cosmology survey applications, as well as optimization techniques to better understand the results of hadron collisions, and quantum simulation to research the potential of studying neutrino-nucleon cross-sections.”
  • “Lawrence Berkeley National Laboratory “will use IBM Q systems as part of its quantum information science research to develop and simulate a variety of algorithms for studying strong correlation, environmental coupling, and excited state dynamics in molecular complexes and materials; novel error mitigation and circuit optimization techniques; and theories resembling the standard model in high-energy physics.”

IBM reports ORNL will use quantum computers along with high-performance supercomputers to benchmark new methods for studying strongly correlated dynamics in quantum materials, chemistry, and nuclear physics.

In addition, to the IBM Q Network and Hub, IBM also offers the no-cost and publicly available IBM Q Experience now supports more than 100,000 users, who have run more than 6.7 million experiments and published more than 130 third-party research papers. Developers have also downloaded Qiskit, a full-stack, open-source quantum software development kit, more than 140,000 times to create and run quantum computing programs.

Link to IBM Q System One announcement: https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use

Link to IBM Q Network announcement: https://newsroom.ibm.com/2019-01-08-ExxonMobil-and-Worlds-Leading-Research-Labs-Collaborate-with-IBM-to-Accelerate-Joint-Research-in-Quantum-Computing

Slide show on IBM Q System One: https://www.research.ibm.com/ibm-q/system-one/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Amid Upbeat Earnings, Intel to Cut 1% of Employees, Add as Many

January 24, 2020

For all the sniping two tech old timers take, both IBM and Intel announced surprisingly upbeat earnings this week. IBM CEO Ginny Rometty was all smiles at this week’s World Economic Forum in Davos, Switzerland, after  Read more…

By Doug Black

Indiana University Dedicates ‘Big Red 200’ Cray Shasta Supercomputer

January 24, 2020

After six months of celebrations, Indiana University (IU) officially marked its bicentennial on Monday – and it saved the best for last, inaugurating Big Red 200, a new AI-focused supercomputer that joins the ranks of Read more…

By Staff report

What’s New in HPC Research: Tsunamis, Wildfires, the Large Hadron Collider & More

January 24, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware. In fact, the company's simulated bifurcation algorithm is Read more…

By Tiffany Trader

Energy Research Combines HPC, 3D Manufacturing

January 23, 2020

A federal energy research initiative is gaining momentum with the release of a contract award aimed at using supercomputing to harness 3D printing technology that would boost the performance of power generators. Partn Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

TACC Highlights Its Upcoming ‘IsoBank’ Isotope Database

January 22, 2020

Isotopes – elemental variations that contain different numbers of neutrons – can help researchers unearth the past of an object, especially the few hundred isotopes that are known to be stable over time. However, iso Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware Read more…

By Tiffany Trader

In Advanced Computing and HPC, Dell EMC Sets Sights on the Broader Market Middle 

January 22, 2020

If the leading advanced computing/HPC server vendors were in the batting lineup of a baseball team, Dell EMC would be going for lots of singles and doubles – Read more…

By Doug Black

DNA-Based Storage Nears Scalable Reality with New $25 Million Project

January 21, 2020

DNA-based storage, which involves storing binary code in the four nucleotides that constitute DNA, has been a moonshot for high-density data storage since the 1960s. Since the first successful experiments in the 1980s, researchers have made a series of major strides toward implementing DNA-based storage at scale, such as improving write times and storage density and enabling easier file identification and extraction. Now, a new $25 million... Read more…

By Oliver Peckham

AMD Recruits Intel, IBM Execs; Pending Layoffs Reported at Intel Data Platform Group

January 17, 2020

AMD has raided Intel and IBM for new senior managers, one of whom will replace an AMD executive who has played a prominent role during the company’s recharged Read more…

By Doug Black

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This