IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

By John Russell

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s existing 20-quibit platform into a more robust, self-contained “package” embodying what will be required as quantum computers move from the lab to the workplace. System One’s glass enclosure is not only cool-looking but also a Faraday cage. Big Blue also announced expansion of the IBM Q Network of quantum collaborators – ExxonMobil, CERN, and Argonne National Laboratory are among the new members – and plans to open the first IBM Q Quantum Computation Center in Poughkeepsie, NY, this year.

Rolling out the QC news at the Consumer Electronics Show may seem an odd choice, but then quantum computing is a little odd, and CES seems to be broadening from a consumer gadget extravaganza into a more expansive IT showcase. Regardless, the latest quantum news reflects Big Blue’s steady long-term effort not only to advance quantum computing research but also to push quantum computing towards commercialization and practical use. IBM is calling the new system, the ‘world’s first integrated quantum computer.’

“This project was begun over a year ago. We wanted to take a systems design approach to building a quantum computer. The goal of System One was to build a machine with a software stack that was automated in a way that we would do on a traditional machine, and we have all of the means of self-calibration, and the special purpose-built electronics to control the qubits and read them out,” said Bob Wisnieff, CTO quantum computing, IBM Research.

“You want to keep the overall system performing as stably as possible. [Final assembly and testing occurred] in October and November and it is it online now. Users have been using it for the last three or four weeks,” he said. This Q System One is located at the Thomas J Watson Research Center in Yorktown Heights, NY. A second will be installed at the new Poughkeepsie center.

IBM Q System One is comprised of a number of custom components that work together including:

  • Quantum hardware designed to be stable and auto-calibrated to give repeatable and predictable high-quality qubits;
  • Cryogenic engineering that delivers a continuous cold and isolated quantum environment;
  • High precision electronics in compact form factors to tightly control large numbers of qubits;
  • Quantum firmware to manage the system health and enable system upgrades without downtime for users; and
  • Classical computation to provide secure cloud access and hybrid execution of quantum algorithms.

One challenge being tackled is the need to maintain the quality of qubits used to perform quantum computations. As noted in the official announcement, “Powerful yet delicate, qubits quickly lose their special quantum properties, typically within 100 microseconds (for state-of-the-art superconducting qubits), due in part to the interconnected machinery’s ambient noise of vibrations, temperature fluctuations, and electromagnetic waves. Protection from this interference is one of many reasons why quantum computers and their components require careful engineering and isolation.”

Q System One’s new ‘package’ includes a nine-foot-tall, nine-foot-wide case of half-inch thick borosilicate glass “forming a sealed, airtight enclosure that opens effortlessly using “roto-translation,” a motor-driven rotation around two displaced axes engineered to simplify the system’s maintenance and upgrade process while minimizing downtime.”

Wisnieff noted, “We chose was a laminated glass such that the glass itself is able to absorb RF and at the top of the case there is metal so that it acts as an ideal Faraday cage with a ground plane above. You can think of it as we are creating a quality of space where we want to control all of the aspects that matter so the qubit can operate with the maximum success possible.”

A rendering of IBM Q System One, the world’s first fully integrated universal quantum computing system, currently installed at the Thomas J Watson Research Center. Source: IBM

Like all current quantum systems except for D-Wave’s, which can be purchased and located on-premise, IBM System Q One is meant to be accessed via the cloud. Wisnieff said the cloud paradigm is likely to be the dominant delivery mechanism for quantum computing for the foreseeable future. System Q One currently runs IBM’s fourth-generation, 20-quibit processor. Even though the system is designed to be more robust, and therefore a more reliable resource for IBM’s Q Network collaborators, Wisnieff suggests that keeping the system in-house will facilitate making upgrades in all areas.

In building the web-platform around System Q One, IBM has focused heavily on usability. Debugging, for example, is a particularly thorny issue because you can’t measure the state of a quantum system without changing it. Prior simulation of ‘quantum code’ run on traditional machines is necessary and may require specialized compute resources.

“You run a simulation of the algorithm on a conventional machine, [where] it is perfectly legal for me know to probe the state of the system to understand exactly what is going on. We’ve learned there’s a ten-to-one simulation to actual quantum run [typically] required,” he said. “We have a number of specialized simulators available. We refer to them as different back ends. So when users submit their codes, they specify the back end that they want to run on, depending upon what aspect of the system they are interested in testing.”

It’s hoped that eventually much of the underlying complexity of quantum computing (system behavior, non-intuitive algorithms, quantum coding) can be abstracted and hidden from domain scientists.

“We’re certainly not ready to do that across the board yet,” said Wisnieff. “One of the things we have already done is in quantum chemistry where we have allowed people to use the data files and data formats that typically would have been submitted to conventional tools to do quantum chemistry calculations. They can submit the same job to a conventional tool like a supercomputer or take that job and move it onto a quantum computer.

“Longterm, that’s exactly the way that you want that hierarchical abstraction to exist so that researchers feel they are using this as a resource and interchangeable to a certain degree in terms of how you submit jobs. Quantum chemistry turns out to be a great place for us to begin experiment with how we might do that,” he said.

Nearer-term, the goal everyone is chasing – besides just developing better and bigger (more qubits) machines – is quantum advantage; that’s the ability use quantum computers do something sufficiently better than classical machines to make the effort worthwhile. “We think there’s a high probability that next several years we are going to begin to find algorithms that we can implement on machines that we can build that will provide some advantage,” said Wisnieff.

In the meantime, the number of collaborators signing on with IBM to develop and use quantum computers is growing. The other portion of IBM’s CES announcements dealt with expansion of the IBM Q Network which IBM describes as “the world’s first community of Fortune 500 companies, startups, academic institutions and research labs working with IBM to advance quantum computing and explore practical applications for business and science.”

Organizations joining the IBM Q Network include:

  • ExxonMobil, the first energy company to join the network, “will explore how quantum computing may address computationally challenging problems across a variety of applications. Quantum computing could more effectively solve large systems of linear equations, which will accelerate the development of more realistic simulations. Potential applications include optimizing a country’s power grid, more predictive environmental and highly accurate quantum chemistry calculations to enable the discovery of new materials for more efficient carbon capture.”
  • CERN, the European Laboratory for Particle Physics, “will work with IBM to explore how quantum computing may be used to advance scientific understanding of the universe. The project will bring together IBM and CERN scientists to investigate how to apply quantum machine learning techniques to classify collisions produced at the Large Hadron Collider, the world’s largest and most powerful particle accelerator.”

“These organizations will work directly with IBM scientists, engineers and consultants to explore quantum computing for specific industries. They will have cloud-based access to IBM Q systems, as they work to discover real-world problems that may be solved faster or more efficiently with a quantum computer versus a classical computer,” said Bob Sutor, vice president, IBM Q Strategy and Ecosystem.

The IBM Q Network provides its member organizations with quantum expertise and resources, quantum software and developer tools, as well as cloud-based access to IBM’s scalable commercial universal quantum computing systems available.

A subset of sorts to the IBM Q Network is IBM Q Hubs organization – you can see how hard IBM is working the IBM Q brand for its entire quantum ‘product’ line. The hubs are part of the IBM Q Network and have access to the IBM Q commercial systems, over the cloud, and focus on quantum computing education, research, development, and implementation.

“Many of our Hubs are government labs and universities. Part of their mission, too, is to partner with industry. The Hub at Keio University was the first to add members in 2017,” said IBM spokesman Chris Nay. The Oak Ridge National Laboratory’s IBM Q Hub, announced in 2017, recently added Argonne, Lawrence Berkeley, and Fermilab. “This group has a more government/academic flavor although IBM encourages its members to work with industry as well,” said Nay.

Here’s IBM’s description of current ORNL hub members and their areas of focus:

  • Argonne National Laboratory “will develop quantum algorithms to help tackle challenges in chemistry and physics. New algorithms will also be used to model and simulate quantum network architectures and develop hybrid quantum-classical architectures, which combine the power of quantum processors with Argonne’s world-class supercomputing resources. Membership in the IBM Q hub will enable Argonne researchers to leverage their expertise in scalable algorithms across a broad set of multidisciplinary scientific applications and explore the impact of quantum computing on key areas including quantum chemistry and quantum materials.”
  • “Fermilab “will use quantum computers for machine learning to classify objects in large cosmology survey applications, as well as optimization techniques to better understand the results of hadron collisions, and quantum simulation to research the potential of studying neutrino-nucleon cross-sections.”
  • “Lawrence Berkeley National Laboratory “will use IBM Q systems as part of its quantum information science research to develop and simulate a variety of algorithms for studying strong correlation, environmental coupling, and excited state dynamics in molecular complexes and materials; novel error mitigation and circuit optimization techniques; and theories resembling the standard model in high-energy physics.”

IBM reports ORNL will use quantum computers along with high-performance supercomputers to benchmark new methods for studying strongly correlated dynamics in quantum materials, chemistry, and nuclear physics.

In addition, to the IBM Q Network and Hub, IBM also offers the no-cost and publicly available IBM Q Experience now supports more than 100,000 users, who have run more than 6.7 million experiments and published more than 130 third-party research papers. Developers have also downloaded Qiskit, a full-stack, open-source quantum software development kit, more than 140,000 times to create and run quantum computing programs.

Link to IBM Q System One announcement: https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use

Link to IBM Q Network announcement: https://newsroom.ibm.com/2019-01-08-ExxonMobil-and-Worlds-Leading-Research-Labs-Collaborate-with-IBM-to-Accelerate-Joint-Research-in-Quantum-Computing

Slide show on IBM Q System One: https://www.research.ibm.com/ibm-q/system-one/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Army Seeks AI Ground Truth

April 3, 2020

Deep neural networks are being mustered by U.S. military researchers to marshal new technology forces on the Internet of Battlefield Things. U.S. Army and industry researchers said this week they have developed a “c Read more…

By George Leopold

Piz Daint Tackles Marsquakes

April 3, 2020

Even as researchers use supercomputers to probe the mysteries of earthquakes here on Earth, others are setting their sights on quakes just a little farther away. Researchers at ETH Zürich in Switzerland have applied sup Read more…

By Oliver Peckham

HPC Career Notes: April 2020 Edition

April 2, 2020

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

By Mariana Iriarte

AMD Epyc CPUs Now on Bare Metal IBM Cloud Servers

April 1, 2020

AMD’s expanding presence in the datacenter and cloud computing markets took a step forward with today’s announcement that its 7nm 2nd Gen Epyc 7642 CPUs are now available on IBM Cloud bare metal servers. AMD, whose Read more…

By Doug Black

Supercomputer Testing Probes Viral Transmission in Airplanes

April 1, 2020

It might be a long time before the general public is flying again, but the question remains: how high-risk is air travel in terms of viral infection? In an article for the Texas Advanced Computing Center (TACC), Faith Si Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. There are roughly 30 ECP application development (AD) subproj Read more…

By John Russell

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. Th Read more…

By John Russell

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatme Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This