A Big Data Journey While Seeking to Catalog our Universe

By James Reinders

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterized as transforming data into insights – which is exactly what some ambitious scientists are working to do with “Sky Survey” data. A Sky Survey is essentially astronomer speak for “lots and lots of images taken by telescopes, along with information of when and where they were taken.”

The Celeste collaboration is a group of scientists who have worked to catalog the visible universe in a way never before accomplished. They seek to create and refine a catalog which can detail the placement and characteristics (such as brightness and rotation) of every visible object in the sky.

Along the way, the Celeste collaboration has already proven that one high productive language (Julia) can offer high performance “at scale” (using hundreds of thousands of processor cores for compute), and their success certainly indicates that we will see more “at scale” big data work.

Journey of the Photons

No amount of effort to design an amazing telescope can overcome the effects that a very long journey has had upon the photons. Putting a telescope into orbit might cut out the last few hundred miles through our atmosphere, but that is just the tip of the iceberg when it comes to figuring out what each photo means. The techniques being developed by the Celeste collaboration are applicable to data regardless of whether it is earth-based or space-based.  So far, the earth-based data has supplied plenty of work to do.

Aside from inherent limitations of any sensing device in a telescope, the final image we get from a telescope is imperfect on account of point spread from the atmosphere, diffraction spikes from the telescope, and gravitational lensing that has occurred along the journey, among other causes. The Celeste collaboration has plugged away at addressing such challenges in their quest to build their meaningful catalog. As I have learned more about all they have done, I have been both amazed with the magnitude of their accomplishments and in awe of the enormous scope of future work that is possible. A truly big data project, Celeste has an insatiable appetite for more data, and for more sophisticated analysis work.

Lots of Compute, and Lots of (High Productivity) Programming

Collecting all known data about the visible universe into a meaningful model certainly is a big data problem. Celeste collaborators’ computational work has landed in the petascale world, meaning they have performed computations at a rate exceeding a thousand million million (1015) floating-point operations per second. They did this with over nine thousand CPUs, a high productivity language called Julia, and a 178 terabyte dataset representing 188 million stars and galaxies. Processing also involved intensive I/O due to the multiple passes over the dataset processed during a 14.6-minute run on the Cori supercomputer.

They did not use FORTRAN or C++ as the language for this task. Instead, they choose a high productivity language out of MIT known as Julia, and used it to very efficiently utilize Intel processors at a petascale. Specifically, they used 1.3 million threads on 9,300 Intel Xeon Phi processors (650,000 cores) to achieve 1.54 petaflops peak performance. This was the first showing of Julia at petascale, and it certainly will not be the last.

The Julia programming language developers explain Julia by saying: “Julia excels at numerical computing. Julia was designed from the beginning for high performance. Its syntax is great for math, many numeric datatypes are supported, and parallelism is available out of the box. Julia’s multiple dispatch is a natural fit for defining number and array-like datatypes.”

Keys to High-Performance Julia

The developers of the Celeste code have a few Julia-specific tips for making sure Julia is competitive with other compiled languages for high performance. Their tips were:

  1. Follow the performance tips given with Julia (no global state/eval/etc. in hotspots).
  2. Type stability (dynamic re-typing might seem cool, but it kills performance).
  3. Minimize dynamic memory allocations; use memory profiles to find allocations to reduce (double benefit: less time allocating also means less time doing garbage collection).

The final tip may be especially important in languages with garbage collection, but it is a great suggestion for programmers in all languages. Similarly, avoiding global state (the first tip) has enormous merit outside Julia as well.

Finally, the developers stress the need to profile to find and optimize hotspots. Hardly a Julia specific tip!  All in all, the experience of the developers with Julia mostly resembled the experience of any HPC programmer using C, C++, and Fortran. They would say that Julia offers a more productive programming environment, but also offers performance you would not find with other high productive languages such as Python. Despite some solid accelerated Python capabilities that are out there, no Python application has shown anything close to petaflops performance.

It seems that making Julia scale to petaflops performance involves the same thinking as effective parallel programming in any high-performance language.

The Data: SDSS

Irénée du Pont Telescope at Las Campanas Observatory. (credit: Krzysztof Ulaczyk, CC BY-SA 4.0)

In 1998, the Apache Point Observatory in New Mexico began imaging every visible object from over 35 percent of the sky in a project known as the Sloan Digital Sky Survey. Today, data is also collected from the Irénée du Pont Telescope at Las Campanas Observatory in Chile (APOGEE-2S). The Sloan Digital Sky Survey (SDSS) has been one of the most successful surveys in the history of astronomy. After a decade of design and construction, the SDSS began regular survey operations in 2000. It has progressed through several phases, SDSS-I (2000-2005), SDSS-II (2005-2008), SDSS-III (2008-2014), and SDSS-IV (2014+). Each phase has involved multiple surveys with interlocking science goals. This project proudly shares that they have already created the most detailed three-dimensional maps of the Universe ever made, with deep multi-color images of one third of the sky, and spectra for more than three million astronomical objects. The project has released fourteen data versions of their datasets thus far. They continue to release new data sets annually. The dataset scheduled for the end of this year will include spectral data across the face of the nearest ten thousand galaxies, instead of the previous surveys which obtained spectra only at the centers of target galaxies. The SDSS team calls this work “Mapping Nearby Galaxies at APO (MaNGA).” The dataset in 2019 will include information from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE-2) to observe the “archaeological” record embedded in hundreds of thousands of stars to explore the assembly history and evolution of the Milky Way. You could say that the details as to how the Galaxy evolved are preserved today in the motions and chemical compositions of its stars.

It’s not hard to image that these ever-expanding datasets will offer even more opportunities for the Celeste collaboration in their analysis work.

Version 1.0

Prior work focused on non-statistical models. The Celeste collaboration focused on a statistical model, a fully generative model to be precise. Over the course of their first three years, the Celeste collaboration developed a new parallel computing method that was used to process the dataset (about 178 terabytes) and produce the most accurate catalog of 188 million astronomical objects in just 14.6 minutes with state-of-the-art point and uncertainty estimates.

In addition to creating a catalog, an important objective of this work was to identify promising galaxies for spectrograph targeting with the hope of better understanding dark energy and the geometry of the universe.

A key design objective of Celeste is to help be an extensible model and inference procedure for use by the astronomical community. This will allow more computation to be applied selectively if deeper understanding of any particular object is desired (e.g., brightness, rotation). Other applications might include finding supernovas or detecting near-Earth asteroids. The teams see enormous potential in the framework they have built. An hour-long presentation offers many more details of the work of Celeste 1.0 and is available for viewing online.

To help grasp the processing being done, here is a sample (using a synthetic image) of processing being done by an early prototype for Celeste 2.0. The synthetic image (the “input” to an autoencoder) is first, then the recon_mean is the mean of the approximation we find to the “output” of an autoencoder. The fact that it appears the same as the input is exactly what is desired! In Celeste 2.0, the recon_mean is formed by summing the four images to the right – which are the “deblended” images. These four images are hopefully useful to astronomers.

Envisioning Version 2.0

They first reported their petascale results last year, and they’ve been busy since then envisioning and developing “Celeste 2.0.” The collaboration is focused on moving to a more sophisticated inference model to replace the purely graphical model approach of Celeste 1.0, which was quite successful in its own right using only conventional variable inference. A key objective of this work is not only more accurate placement and features, but also more accurate uncertainties (“error bars”) for these as well.

Celeste 2.0 utilizes an autoencoder (variable) with a recurrent neural network (RNN), that also employs bayesian inference, and adds a gravitational lensing capability. The Bayesian inference technique is commonly associated with big data and machine learning projects, and typically  gets sharper predictions from data than other techniques. Bayesian inference effectively aims to inject some common sense (bias based on additional knowledge) into an otherwise sterile statistical analysis. In the case of Celeste 2.0, the newer techniques capture meaning from the vast dataset more accurately.

Bayesian models are composable, meaning that they work well as add-ons. This enables work on using Bayesian models to create a new gravitational lensing capability to undo the distortions which have occurred by the time it reaches a telescope. This is an area of active development, which promises to further refine the catalog of visible objects.

Endless Possibilities

Of course, I’m guessing work will not end with Celeste 2.0. They’ve opened up the challenge of building a catalog of the universe, and like all big data problems it has an insatiable appetite for more data. The continually growing sources of data in the SDSS offers many opportunities for the analysis work of the Celeste collaboration[1]. One day, perhaps gravitational wave data from the newest source of astronomy data can be incorporated? By then, we might also be able to offer them a data feed from a telescope sitting on Mars. It will happen.

In the meantime, the Celeste collaboration continues to make excellent use of the Intel processors in the Cori supercomputer with the Julia language. And this provides a wealth of encouragement for all big data projects looking to scale.

[1] The key contributors to the Celeste collaboration have been: Jeffrey Regier, Bryan Liu and Jon McAuliffeat of UC Berkeley ; Andy Miller and Ryan Adams of Harvard; David Schlegel of LBL Physics; and Prabhat of NERSC.

James Reinders is an HPC enthusiast and author of eight books with more than 30 years of industry experience, including 27 years at Intel Corporation (retired June 2016).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire