STAC Floats ML Benchmark for Financial Services Workloads

By John Russell

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performance of machine learning and deep learning workflows for financial applications across systems. The new report, Toward business-driven ML benchmarks: An NLP example, examined performance on different Google cloud instances.

“This study was designed to illustrate how STAC Benchmarks for machine learning (ML) can be constructed and used. It is also intended to help data scientists and data engineers know what to expect when using the data science tools and cloud products of this project and how to avoid common pitfalls. The workload is topic modeling of SEC Form 10-K filings using Latent Dirichlet Allocation (LDA), a form of natural language processing (NLP),” according to the report.

STAC used the workload to explore the question of scale-up versus scale-out in a cloud environment on three SUTs:

  • A single Google Cloud Platform (GCP) n1-standard-16 instance with Skylake and RHEL 7.6
  • A single GCP n1-standard-96 instance with Skylake and RHEL 7.6.
  • A Google Cloud Dataproc (Spark as a service) cluster containing 13 x n1-standard-16 Skylake instances (1 master and 12 worker nodes) and Debian Linux 8.”

STAC’s foray into ML/DL benchmarking was presented with both caution and ambition: “While we hope these results are informative, it is important to understand what they are not. They are not competitive benchmark results of the sort readers are accustomed to finding in STAC Reports. No vendors contributed to optimization of the SUTs, so we can be fairly certain that they don’t represent the best possible results. As soon as the [STAC] Council adopts these or other benchmark specifications for ML, the competitive benchmark numbers will begin to flow.”

Extracting useful information from various sources – regulatory filings, company reports, news, etc. – has a long history in financial services. Recently various AI approaches have increasingly been pressed into service. The latest report notes the challenge ML presents:

 “…There are dozens upon dozens of ML algorithms; at least ten ML frameworks or libraries with implementations of those algorithms; nearly two dozen processor architectures vying for ML workloads (yes, you read that right); infrastructure-as-a-service and machine-learning-as-a-service offerings from all the major cloud providers; and countless software and software-as-a-service providers promising to simplify, accelerate, or otherwise enhance machine learning workflows. Data scientists and the technologists that support them face a tyranny of choice.

“The mission of the STAC Benchmark Council is to fight such tyranny. The Council develops benchmark standards that are based on real world use cases and that measure things that matter to a business (in the case of machine learning, those are primarily time to market, cost, and model quality, as discussed later in this report). This enables customers, vendors, and STAC to make apples-to-apples comparisons of techniques and technologies, thus making architectural and product choices easier for customers. It also gives the vendor community use cases developed by multiple customers (like a multi-customer POC) on which they can focus product development.”

The full study is available to STAC members however the STAC Study – Excerpts is freely available for download after registering and is fascinating. Issues around measuring performance, cost, and quality are tackled. Google (cloud resources) and Intel (funding) helped support this project. Presented below are snippets of the material contained in the excerpts report.

STAC compared performance on three instances (details below). “We defined three dataset sizes, as shown in Table 2. The first, 1/3 of a year, represents the sort of small subset that a quant might use for quick and dirty modeling before initiating a search on the full dataset of interest. The largest dataset size in this project was 3 years. This is a realistic size with manageable costs and time requirements for a benchmark project. In practice a firm may want to use substantially more, perhaps 10 or even 20 years, or perhaps compute models for a rolling 3-year window over a 10- or 20-year interval. Most firms will run this kind of workload many times, which raises the stakes.”

Figure 1. A benchmark of the complete business problem would extend from raw data all the way through to simulated P&L. We hope it is obvious why that would be too large a scope for an initial project (and probably too large for any useful benchmark.) So the question was which parts to focus on. Source: STAC Excerpts Report derived from STAC report Toward business-driven ML benchmarks: An NLP example

All three solutions used the same analytics software stack: Python 3.5; Python 3 library spaCy 2.0.12; Python 3 library Scikit-learn 0.20.0; Intel Python 3 library MKL 2018.0.3; Python 3 library Joblib 0.12.3.

To support this, two of the SUTs provided infrastructure as a service, and one provided Spark as a service. STAC described the Google instance configurations as follows:

“v16 – A single cloud instance representative of where a user might start when looking for something bigger than a laptop at a reasonable cost, in the absence of knowledge about how the workload scales. Configuration:

  • Google Compute Engine n1-standard-16 (16 vCPUs, 60 GB memory)
  • CPU platform Intel Skylake or better
  • 20 GB Google Persistent Disk as boot disk
  • 1 TB Google Persistent Disk mounted read-only as data disk
  • Red Hat Enterprise Linux 7.6

“v96 – A single cloud instance with the most vCPUs currently available. The point was to see how well the 
workload “scaled up” without the complexity of multiple nodes. Configuration:

  • Google Compute Engine n1-standard-96 (96 vCPUs, 360 GB memory)
  • CPU platform Intel Skylake or better
  • 20 GB Google Persistent Disk as boot disk
  • 1 TB Google Persistent Disk mounted read-only as data disk
  • Red Hat Enterprise Linux 7.6

“DP-v192 – Google Cloud Dataproc (Spark as a service), using multiple nodes to double the number of cores versus the v96, with autoscaling enabled in order to limit the cost of under-utilized cores. This SUT used Dataproc simply to get access to more cores on which to run a Python script. This way we only had to write a Spark wrapper around exactly the same code as we ran on the single instances. This is a common transition path for data scientists initially trying to scale out in the cloud, but since it is neither Spark- nor cloud-native, it probably doesn’t represent optimal use of the platform. Configuration:

  • Google Dataproc image 1.2.22 with autoscaling (alpha) and minimum CPU platform = Skylake (beta)
  • Debian 8
  • 13 x Google Compute Engine n1-standard-16 (16 vCPUs, 60 GB memory). One master nodes plus 12 worker nodes.
  • 60 GB Google Persistent Disk as boot disk for each node
  • Google Cloud Storage for the input datasets and persisted results”

As you can see the results were interesting.

Table 3 shows the total elapsed time and the average cost per modeling experiment for each work set on each SUT. “For v16, we did not run the largest work set (216 experiments on 3 years of data) because the second largest (108 experiments on 3 years of data) took more than 15 hours, meaning the larger work set would take longer than a day. We arbitrarily considered the data scientist’s tolerance for elapsed time to be “overnight”, which is roughly 16 hours. At least that was our tolerance.” Source: STAC

The report also noted Google Cloud Dataproc utilized its autoscaling feature and that because that feature was still in alpha status, by STAC policy did not make the results public but included them in the full study.

STAC offered these additional observations:

  • “While it’s easy to assume that one can accelerate a workload by throwing more cores at it, this isn’t always true. In fact, this study highlights a few cases where trying to exploit additional cores slowed a workload down.
  • “For a given code base and processor type, there is a lower bound of elapsed time that cannot be overcome by scaling up or out. Individual experiments in this implementation were not able to utilize more than one vCPU. Thus, even with a surplus of cores and no platform overhead, the elapsed time for each work set is gated by its longest-running experiment. The only way to shrink that time is to improve performance per vCPU through faster code or a faster processor.
  • “As documented in this study, v96 is preferable for some workloads while v16 is preferable for others, depending on the user firm’s priorities (operating cost vs data scientist cost vs time to market). Fortunately, the fact that Google Persistent Disk makes it possible to fire up any type of instance and access the same data as other instances makes it convenient to mix and match instance types according to the task at hand.”

It will be interesting to monitor how the STAC community responds, how the exploratory benchmark evolves, and when vendors start using the STAC ML benchmark on their systems. There are, of course, many tests being used to assess AI capabilities of systems. One new effort – the MLPerf benchmark suite for assessing training and inference performance introduced last May – has attracted considerable support and recently released its first round of results (see HPCwire article, Nvidia Leads Alpha MLPerf Benchmarking Round.) Another is aimed at large and leadership class systems, (see HPCwire article, The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning).

The STAC report offers the following assessment of its effort: “We think this [initial] implementation is good enough to yield technology comparisons that can be applied to the real world. While the implementation is constructed from mostly publicly available references and is perhaps not exactly what a firm would deploy (for example a firm might highly customize the preprocessing stage of the pipeline), we believe the algorithm is sufficiently representative of the real world with respect to performance and quality to make it a useful instrument to inform real algorithmic and architectural choices. We also think it is simple enough that STAC members (users and vendors) will be able to analyze and optimize its performance, as well as introduce new libraries and techniques, without a huge effort.”

Link to STAC report:

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

12 Midwestern Universities Team to Boost Semiconductor Supply Chain

August 8, 2022

The combined stressors of Covid-19 and the invasion of Ukraine have sent every major nation scrambling to reinforce its mission-critical supply chains — including and in particular the semiconductor supply chain. In th Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York St Read more…

Supercomputer Models Explosives Critical for Nuclear Weapons

August 6, 2022

Lawrence Livermore National Laboratory (LLNL) is one of the laboratories that operates under the auspices of the National Nuclear Security Administration (NNSA), which manages the United States’ stockpile of nuclear we Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking — which serves as the EU’s concerted supercomputing play — announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months before... Read more…

HPC Career Notes: August 2022 Edition

August 5, 2022

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

AWS Solution Channel

Shutterstock 1590905653

Expanded filesystems support in AWS ParallelCluster 3.2

Data is critical to HPC, and ensuring your simulations have the data they need — when they need it — is essential. However, data can originate from many sources and need to be consumed by diverse resources. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1731567844

Using Cloud-Based, GPU-Accelerated Systems for AML Fraud Detection

A major issue facing financial services organizations is tracking fraud due to money laundering. Trying to track money laundering is an expensive and time-consuming process due to the large volumes of financial data which must be analyzed. Read more…

Sniff Test: Supercomputer Research Investigates Odor Neutralizers

August 4, 2022

Factories, farms and landfills are functionally essential to our daily lives, but the less-than-desirable smells they often produce may be somewhat less necessary. Researchers from the University of New Orleans, the Louisiana Department of Environmental Quality, and the Jefferson Parish Department of Environmental Affairs in Jefferson, Louisiana... Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking — which serves as the EU’s concerted supercomputing play — announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months before... Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

CXL Brings Datacenter-sized Computing with 3.0 Standard, Thinks Ahead to 4.0

August 2, 2022

A new version of a standard backed by major cloud providers and chip companies could change the way some of the world's largest datacenters and fastest supercomputers are built. The CXL Consortium on Tuesday announced a new specification called CXL 3.0 – also known as Compute Express Link 3.0... Read more…

Inside an Ambitious Play to Shake Up HPC and the Texas Grid

August 2, 2022

With HPC demand ballooning and Moore’s law slowing down, modern supercomputers often undergo exhaustive efficiency efforts aimed at ameliorating exorbitant energy bills and correspondingly large carbon footprints. Others, meanwhile, are asking: is min-maxing the best option, or are there easier paths to reducing the bills and emissions of... Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

OpenCAPI to Be Folded into CXL

August 1, 2022

As the need for speed drives computational workloads, more standards organizations are coalescing around a standard called Compute Express Link – also known a Read more…

US CHIPS Act Close to Being Signed into Law

July 28, 2022

The U.S. House today passed the CHIPS and Science Act of 2022, which authorizes $280 billion in funding to boost semiconductor research and production in the country. The passage of the bill paves the way for U.S. president Joe Biden to sign the legislation into law, which would officially open up funding... Read more…

GE Research Enters the Exascale Era

July 28, 2022

The pitch for GE Research is easy, as Richard Arthur, senior director of computational methods research for GE Research, explained at the latest meeting of the DOE’s Advanced Scientific Computing Advisory Committee (ASCAC): a third of the electrons in the world that flow through devices are generated on GE equipment; every two seconds... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers


ISC 2022 Booth Video Tours


Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

AMD Lines Up Alternate Chips as It Eyes a ‘Post-exaflops’ Future

June 10, 2022

Close to a decade ago, AMD was in turmoil. The company was playing second fiddle to Intel in PCs and datacenters, and its road to profitability hinged mostly on Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow