Boosting Discovery Speed and Productivity

February 4, 2019

While price and performance have typically been used when evaluating, selecting, and operating HPC storage systems, increasingly productivity is a more important parameter.  In essence, productivity means getting the best insights and answers in the shortest possible wall clock time within an envelope of other factors such as cost, and when the result is needed.

Productivity not only takes into account processing speed, the ability to keep CPUs satiated, and fast data transfers from storage to compute resources, but also factors in reliability, availability, speed to insight, and the completion of the greatest number of compute jobs in a given time. One additional productivity criteria to consider is how long a system can remain useful without excessive downtime and maintenance. Essentially, the discovery process needs high-performance systems that can quickly run the most compute and data analysis jobs over many years without excessive downtime or maintenance.

NCSA Blue Waters: The HPC high productivity poster child

A good example that embodies what is needed in the most demanding discovery environments is the National Center for Supercomputing Applications Blue Waters system. The Blue Waters team partnered with the Cray supercomputing company for compute and data storage to help achieve the high productivity goals.

From the start, those managing the Blue Waters program focused on productivity. Its mission is to enable science and engineering that cannot be done otherwise, and to greatly improve time to insight.  Examples of things not even feasible before Blue Waters include:

  • all atom simulations of viruses using over 100 million atoms
  • simulation of the first billion years of the universe evolution and galaxy formation after the big bang, which required all the memory on the Blue Waters compute system
  • producing high resolution digital elevation models of 1/3 of the earth in less than two years.

Some teams report a factor of ten or more increases in productivity while others report an infinite increase because they can do things that prior to Blue Waters were simply not possible.

Beyond raw computer power, the system had to have a tightly integrated, high-performance storage system that could support the compute data demands. Additionally, the entire compute and storage infrastructure had to be tightly integrated, flexible, optimized, and be highly reliable to avoid diminishing the quality of services.

One great challenge with computing systems used for scientific discovery is sustaining productivity over the years. Each year, the modeling, simulations, and analysis gets more complex, more granular, and makes use of vastly more data.

According to Bill Kramer, Principle Investigator and Director of the Blue Waters Project, “Despite its scale, Blue Waters is incredibly reliable.  Over the last project year, Blue Waters had only one unscheduled system wide interruption, due to a campus wide power issue, and has a 99.7% scheduled uptime.  Mean Time Between System-wide Interrupt have been four to eight months for the past several years. Even more importantly, (knock on wood somewhere please), is the node and disk reliability.  On a daily basis, the individual node failure rate is below 1.5 nodes/day (0.006% of all the nodes) and a drive failure rate continuing below 0.43 drives/day (0.0026% of all the disks). What that means is Blue Waters is running better now than it did in the first couple of years of operations and there is no indication that will change in the next couple of years.”

Supercomputing systems must scale in compute power, as well as storage capacity and performance. In every field, new lab equipment, satellites, telescopes and sensors have produced higher-resolution and finer granular data. In the life sciences, next-generation sequencers have become faster (producing more data in a given time) and much less expensive to operate (allowing many more sequences to be done in given time). Storage systems have had to keep pace with the data volume growth. And their data analysis systems had to scale in performance.

Blue Waters has kept pace with the demands of the scientific research community. Today, Blue Waters continues to be a discovery mainstay for the open research community as a workhorse system at NCSA. Since March 2013, Blue Waters has delivered over 26 billion core-hours to scientific research. A key to this success has been the ability to scale the system’s storage bandwidth and metadata to accommodate the enormous amounts of data being analyzed.

“The storage system requirements on Blue Waters are extremely ambitious.  The 1.1 TB/s sustain I/O bandwidth for Blue Waters is still unmatched by any other production open system in the world today. Combined with 36 racks of ClusterStorTM (36+of raw PB of storage PB) and over 250 PB of near-line storage, Blue Waters is still the most data capable system in the HPC world.” explained Kramer.

The key to HPC productivity: Find the right technology partner

Building a fast and highly productive system for discovery requires the integration of many advanced technologies. For leading-edge systems, that means incorporating solutions that are new to the market. Most organizations simply do not have the across-the-board expertise in every element, nor the in-house skill set to evaluate, select, and integrate the elements and then optimize and maintain the system’s performance.

That’s where an experienced technology partner can help. Cray designed, architected, and built the Blue Waters extreme scale system and maintains and improves the system to keep it at the leading edge of productive computing.

The system’s ClusterStor storage is a good example of how Blue Waters can remain a high performer and continue to be a productive resource. The system’s productivity remains high due to the ClusterStor storage’s high-performance and high level of resiliency.  Furthermore, the Blue Waters, with the ClusterStor storage system is a leading enabler of being able to converge big data and extreme computing workload on the same system running very large modeling to extreme data intensive and machine/deep learning workload.

“The ClusterStor organization has had the privilege to partner with the Blue Waters team for the past 6 years. As a result, we have carried forward the lessons learned into the latest ClusterStor storage solutions”, according to Don Grabski, who has been with the ClusterStor product management team for 7 years.  The ClusterStor L300 and L300N line of parallel file system storage represents the latest HPC storage solution. This storage is a perfect match for the most demanding discovery workloads. ClusterStor parallel file systems balance the value equation by delivering the exact performance, speed, scalability, data protection, and availability to match an organization’s requirements and budget demands.

The systems deliver enterprise-level performance with more capacity, fewer drives, less need for IT support and more data access. Furthermore, ClusterStor technology optimizes performance productivity and system availability, accelerating time to insight.

The current ClusterStor product line includes:

  • ClusterStor L300 Storage System, which is an all-HDD Lustreâ It achieves performance requirements with the lowest number of HDDs, enclosures, and racks by maximizing the performance of each storage device.
  • ClusterStor L300N Storage System, which is a hybrid SSD/HDD solution with flash-accelerated NXD software that redirects I/O to the appropriate storage medium. It delivers cost-effective, consistent performance on mixed I/O workloads while shielding the application, file system, and users from complexity through transparent flash acceleration.
  • ClusterStor L300F Storage System, which is a scalable storage unit that provides the opportunity to add Flash storage pool creating a truly hybrid system. The L300F is designed and optimized to overcome the latency experienced by rotating media – the remaining IOPS bottleneck for Lustreâ.

The ClusterStor line includes engineered HPC Storage Solution features including:

  • Integrated software and hardware solution
  • Test validation
  • Management
  • Support automation

Taking these features together, ClusterStor storage systems enable the fast time-to-results and sustained performance needed in today’s most demanding discovery environments. The systems also scale to meet future demands by offering a way to increase capacity without impacting performance or availability seamlessly.

To learn more about increasing HPC productivity, visit:


Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial research. Can you discuss key developments in recent years? Read more…

By Steve Conway, Hyperion

The Barcelona Supercomputing Center Offers a Virtual Tour of Its MareNostrum Supercomputer

July 6, 2020

With the COVID-19 pandemic continuing to threaten the world and disrupt normal operations, facility tours remain a little difficult to operate, with many supercomputing centers having shuttered facility tours for visitor Read more…

By Oliver Peckham

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

HPC Career Notes: July 2020 Edition

July 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Supercomputers Enable Radical, Promising New COVID-19 Drug Development Approach

July 1, 2020

Around the world, innumerable supercomputers are sifting through billions of molecules in a desperate search for a viable therapeutic to treat COVID-19. Those molecules are pulled from enormous databases of known compoun Read more…

By Oliver Peckham

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Hoefler’s Whirlwind ISC20 Virtual Tour of ML Trends in 9 Slides

June 23, 2020

The ISC20 experience this year via livestreaming and pre-recordings is interesting and perhaps a bit odd. That said presenters’ efforts to condense their comments makes for economic use of your time. Torsten Hoefler’s whirlwind 12-minute tour of ML is a great example. Hoefler, leader of the planned ISC20 Machine Learning... Read more…

By John Russell

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers


Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This