Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

By John Russell

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking system for deep learning, [and] provides software infrastructure to utilize the most powerful supercomputers for extreme-scale workloads.” The researchers used CSCS Piz Daint supercomputer in developing the benchmark, have made the code freely available on GitHub, and last week published a detailed analysis of their approach (A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning)[i].

“Deep500 [is] the first customizable bench- marking infrastructure that enables fair comparison of the plethora of deep learning frameworks, algorithms, libraries, and techniques,” write the researchers. “The key idea behind Deep500 is its modular design, where deep learning is factorized into four distinct levels: operators, network processing, training, and distributed training. Our evaluation illustrates that Deep500 is customizable (enables combining and benchmarking different deep learning codes) and fair (uses carefully selected metrics). Moreover, Deep500 is fast (incurs negligible overheads), verifiable (offers infrastructure to analyze correctness), and reproducible.”

The paper is fascinating not only for it hands-on analysis of DL benchmarking challenges and how-to-use Deep500 elements but also for its comparison of Deep500 with existing benchmarks such as MLPerf. Posting the work fulfills a promise made by ETH researchers Tal Ben-Nun and Torsten Hoefler at SC18 at the Deep500 BOF (see HPCwire article, The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning). Presumably the next step will be actively soliciting feedback from the community and enticing users to try out the new tool set.

Ben-Nun and Hoefler told HPCwire in an email today, “We developed the modular benchmarking approach as a basis for a reproducible measurement infrastructure. It will be used to establish the competition on various levels. Our main focus now is looking for scientific problems to train for the competition, and any input from the community is welcome. You can contact us at [email protected]

Among other things, that sounds like plans for a Deep500 list (à la Top500) are firming up; one wonders when, SC19 perhaps?

Given the rapid adoption of DL in HPC, efforts to create reliable, meaningful DL benchmarking tools have been ratcheting up. Deep500 is the only system, say the authors, that focuses on performance, accuracy, and convergence, while simultaneously offering a wide spectrum of metrics and criteria for benchmarking, enabling customizability of design, and considering a diversity of workloads (benchmark comparison table below,  click to enlarge).

Ben-Nun and colleagues do a nice job capturing the challenge of attempting to build reasonable DL benchmarking tools.

Excerpt: “Recent years saw an unprecedented growth in the number of approaches, schemes, algorithms, applications, platforms, and frameworks for DL. First, DL computations can aim at inference or training. Second, hardware platforms can vary significantly, including CPUs, GPUs, or FPGAs. Third, operators can be computed using different methods, e.g., im2col or Winograd in convolutions. Next, DL functionalities have been deployed in a variety of frameworks, such as TensorFlow or Caffe. These functionalities may incorporate many parallel and distributed optimizations, such as data, model, and pipeline parallelism. Finally, DL workloads are executed in wildly varying environments, such as mobile phones, multi-GPU clusters, or large-scale supercomputers.”

No single metric, for example, is adequate note the researchers: “On one hand, some metrics may simply be too detailed, for example the number of cache misses in 2D convolution implemented in TensorFlow or Caffe2. Due to the sheer complexity of such frameworks, this metric would probably not provide useful insights in potential performance regressions. On the other hand, other metrics may be too generic, for example simple runtime does not offer any meaningful details and does not relate to accuracy. Thus, one must select metrics that find the right balance between accuracy and genericness. In Deep500, we offer carefully selected metrics, considering performance, correctness, and convergence in shared- as well as distributed-memory environments.”

Deep500 is based on the following five pillars (description take from the paper):

  • “Customizability indicates that Deep500 enables benchmarking of arbitrary combinations of DL elements, such as various frameworks running on different platforms, and executing custom algorithms. To achieve this, we design Deep500 to be a meta-framework that can be straightforwardly extended to benchmark any DL code. Table I illustrates how various DL frameworks, libraries, and frontends can be integrated in Deep500 to enable easier and faster DL programming.
  • “Metrics indicates that Deep500 embraces a complex nature of DL that, unlike benchmarks such as Top500, makes a single number such as FLOPS an insufficient measure. To this end, we propose metrics that consider the accuracy-related aspects of DL (e.g., time required to ensure a specific test-set accuracy) and performance-related issues (e.g., communication volume).
  • “Performance means that Deep500 is the first DL benchmarking infrastructure that can be integrated with parallel and distributed DL codes.
  • “Validation indicates that Deep500 provides infrastructure to ensure correctness of aspects such as convergence.
  • “Reproducibility as specified in recent HPC initiatives[ii]to help developing reproducible DL codes.”

The core enabler in Deep500, write the researchers, is the modular design that groups all the required functionalities into four levels: 1 Operators; 2 Network Processing; 3 Training; and 4 Distributed Training. Each level provides relevant abstractions, interfaces, reference implementations, validation procedures, and metrics. “We illustrate levels and their relationships in Fig. 1 (shown higher in article) and the full design of the Deep500 meta-framework is shown in Fig. 3 (an eye test for sure but worth examining, click to enlarge).”

The researchers emphasize that, “The Deep500 meta-framework is a benchmarking environment, and as such it is not meant to be a DL framework that provides optimized implementations of its own. Rather, Deep500 assumes high-performance frameworks exist. By abstracting the high-level aspects of DL (e.g., data loading) in a platform-agnostic manner, Deep500 enables the measurement and development of various metrics (performance, accuracy) in the different contexts of DL and distributed DL.

“By taking the white-box approach, the user roles that Deep500 enables can be of a benchmark evaluator, or of an experimental scientist. In the former, one might use Deep500 and the various built-in metrics to choose hardware (or soft- ware) that performs best given a target workload. The latter role can use metrics and automatic integration with existing frameworks in order to empirically evaluate new operators, training algorithms, or communication schemes for DL. Since Deep500 provides reference code for nearly every concept, new methods can be validated against existing verified (yet slow) implementations.”

Deep500 is the only system that focuses on performance, accuracy, and convergence, while simultaneously offering a wide spectrum of metrics and criteria for benchmarking, contend the authors. I will be interesting to monitor quickly the new benchmark gets tested. There is a fair amount of detail in the paper which is nevertheless a reasonably quick read and good resource.

NOTES

[i]A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning, Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas, Daniel Peter, Torsten Hoefler, https://arxiv.org/pdf/1901.10183.pdf

[ii]T. Hoefler and R. Belli, “Scientific benchmarking of parallel computing systems,” in SC, 2015.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are already ensconced at the venue. In any case, you're busy, so he Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the GFS – its first new dynamical core in nearly 40 years – w Read more…

By Oliver Peckham

NCSU Researchers Overcome Key DNA-Based Data Storage Obstacles

June 12, 2019

In the race for increasingly dense data storage solutions, DNA-based storage is surely one of the most curious – and a team of North Carolina State University (NCSU) researchers just brought it two steps closer to bein Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Transforming Dark Data for Insights and Discoveries in Healthcare

Healthcare in the USA produces an enormous amount of patient-related data each year. It is likely that the average person will generate over one million gigabytes of health-related data across his or her lifetime, equivalent to 300 million books. Read more…

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

Building the Team: South African Style

June 9, 2019

We’re only eight days away from the start of the ISC 2019 Student Cluster Competition. Fourteen student teams from eleven countries will travel to Frankfurt, Read more…

By Dan Olds

Scientists Solve Cosmic Mystery Through Black Hole Simulations

June 6, 2019

An international team of researchers has finally solved a long-standing cosmic mystery – and to do it, they needed to produce the most detailed black hole simulation ever created. Read more…

By Oliver Peckham

Quantum Upstart: IonQ Sets Sights on Challenging IBM, Rigetti, Others

June 5, 2019

Until now most of the buzz around quantum computing has been generated by folks already in the computer business – systems makers, chip makers, and big cloud Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This