UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

By John Russell

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing – Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing.

You may recall the first paper (Above the Clouds: A Berkeley View of Cloud Computing) provided a detailed portrait of cloud computing’s past, present, and future as envisioned by the researchers. Published on February 9, 2009, it has garnered more than 17,000 citations including more than 1,000 in the past year. Not bad.

The new paper[i], dated Feb 10, 2019, takes a few modest bows for past prescience and then plunges into serverless computing, what it is, what the challenges are, and, of course, offers concluding predictions (presented below) without which any such report would be remiss. The paper was issued by authors from the Electrical Engineering and Computer Sciences, UC Berkeley and includes two notable repeats from the original paper: David Patterson (now an emeritus professor) and Ion Stoica.

Here’s a portion of the abstract:

“Serverless cloud computing handles virtually all the system administration operations needed to make it easier for programmers to use the cloud. It provides an interface that greatly simplifies cloud programming, and represents an evolution that parallels the transition from assembly language to high-level programming languages. This paper gives a quick history of cloud computing, including an accounting of the predictions of the 2009 Berkeley View of Cloud Computing paper, explains the motivation for serverless computing, describes applications that stretch the current limits of serverless, and then lists obstacles and research opportunities required for serverless computing to fulfill its full potential.”

Without doubt, the notion of serverless computing is on the rise. In theory, a user “just writes a cloud function in a high-level language, picks the event that should trigger the running of the function—such as loading an image into cloud storage or adding an image thumbnail to a database table—and lets the serverless system handle everything else: instance selection, scaling, deployment, fault tolerance, monitoring, logging, security patches, and so on,” they write.

The researchers bullet out three key distinctions between serverless and serverful clouds:

  • Decoupled computation and storage. The storage and computation scale separately and are provisioned and priced independently. In general, the storage is provided by a separate cloud service and the computation is stateless.
  • Executing code without managing resource allocation. Instead of requesting resources, the user provides a piece of code and the cloud automatically provisions resources to execute that code.
  • Paying in proportion to resources used instead of for resources allocated. Billing is by some dimension associated with the execution, such as execution time, rather than by a dimension of the base cloud platform, such as size and number of VMs allocated.

A few observers say the idea is old hat. The authors counter:

“Some have argued that serverless computing is merely a rebranding of preceding offerings, perhaps a modest generalization of Platform as a Service (PaaS) cloud products such as Heroku, Firebase, or Parse. Others might point out that the shared web hosting environments popular in the 1990s provided much of what serverless computing has to offer. For example, these had a stateless programming model allowing high levels of multi-tenancy, elastic response to variable demand, and a standardized function invocation API, the Common Gateway Interface (CGI), which even allowed direct deployment of source code written in high-level languages such as Perl or PHP. Google’s original App Engine, largely rebuffed by the market just a few years before serverless computing gained in popularity, also allowed developers to deploy code while leaving most aspects of operations to the cloud provider. We believe serverless computing represents significant innovation over PaaS and other previous models.

“Today’s serverless computing with cloud functions differs from its predecessors in several essential ways: better autoscaling, strong isolation, platform flexibility, and service ecosystem support. Among these factors, the autoscaling offered by AWS Lambda marked a striking departure from what came before. It tracked load with much greater fidelity than serverful autoscaling techniques, responding quickly to scale up when needed and scaling all the way down to zero resources, and zero cost, in the absence of demand. It charged in a much more fine-grained way, providing a minimum billing increment of 100 ms at a time when other autoscaling services charged by the hour. In a critical departure, it charged the customer for the time their code was actually executing, not for the resources reserved to execute their program. This distinction ensured the cloud provider had “skin in the game” on autoscaling, and consequently provided incentives to ensure efficient resource allocation.”

There’s a lot to unpack here (apologies to the authors for excerpting so much of their work but it seemed the best way to minimize insertion of error). The paper is best read in full and the authors don’t shrink from laying out challenges (abstraction, system, networking, security, and architecture) and take a stab at identifying “fallacies and pitfalls.” They also examine several applications for serverless computing suitability including, for example, these two typical HPC and machine learning apps:

  • “Numpywren: Linear algebra. Large scale linear algebra computations are traditionally deployed on supercomputers or high-performance computing clusters connected by high-speed, low-latency networks. Given this history, serverless computing initially seems a poor fit. Yet there are two reasons why serverless computing might still make sense for linear algebra computations. First, managing clusters is a big barrier for many non-CS scientists [27]. Second, the amount of parallelism can vary dramatically during a computation. Provisioning a cluster with a fixed size will either slow down the job or leave the cluster underutilized
  • “Cirrus: Machine learning training. Machine Learning (ML) researchers have traditionally used clusters of VMs for different tasks in ML workflows such as preprocessing, model training, and hyperparameter tuning. One challenge with this approach is that different stages of this pipeline can require significantly different amounts of resources. As with linear algebra algorithms, a fixed cluster size will either lead to severe underutilization or severe slowdown. Serverless computing can address this challenge by enabling every stage to scale to meet its resource demands. Further, it frees developers from managing clusters.”

Time will tell how closely this latest portrait of cloud computing matches what actually unfolds.

The authors contend that by providing a simplified programming environment, serverless computing makes the cloud much easier to use, thereby attracting more people who can and will use it.

“Serverless computing comprises FaaS (function as a service) and BaaS (back end as a service) offerings, and marks an important maturation of cloud programming. It obviates the need for manual resource management and optimization that today’s serverful computing imposes on application developers, a maturation akin to the move from assembly language to high-level languages more than four decades ago,” they write.

They offer the following predictions about serverless computing in the next decade (bold added):

  • We expect new BaaS storage services to be created that expand the types of applications that run well on serverless computing. Such storage will match the performance of local block storage and come in ephemeral and durable variants. We will see much more heterogeneity of computer hardware for serverless computing than the conventional x86 microprocessor that powers it today.
  • We expect serverless computing to become simpler to program securely than serverful computing, benefiting from the high level of programming abstraction and the fine-grained isolation of cloud functions.
  • We see no fundamental reason why the cost of serverless computing should be higher than that of serverful computing, so we predict that billing models will evolve so that almost any application, running at almost any scale, will cost no more and perhaps much less with serverless computing.
  • The future of serverful computing will be to facilitate BaaS. Applications that prove to be difficult to write on top of serverless computing, such as OLTP databases or communication primitives such as queues, will likely be offered as part of a richer set of services from all cloud providers.
  • While serverful cloud computing won’t disappear, the relative importance of that portion of the cloud will decline as serverless computing overcomes its current limitations.

[i]Cloud Programming Simplified: A Berkeley View on Serverless Computing,

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth, Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica and David A. Patterson, https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf

Source: Figure & Table from the paper

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ll get there at last month’s MIT-IBM Watson AI Lab’s AI Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve the problem, NASA researchers are using the world’s fastes Read more…

By Staff report

Chaminade University’s Immersion Program Builds Capacity for Data Science in Hawaii, Pacific Region

October 10, 2019

Kuleana is a uniquely Hawaiian value and practice which embodies responsibility to self, community, and the ‘aina' (land). At Chaminade University, a federally designated Native Hawaiian serving university in Hawai‘i Read more…

By Faith Singer-Villalobos

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

HPC in the Cloud: Avoid These Common Pitfalls

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community.]

It seems that everyone is experimenting about cloud computing. Read more…

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

NSF Announces New AI Program; Plans $120M in Funding Next Year

October 8, 2019

As the saying goes, when you’re hot, you’re hot. Right now, AI is scalding. Today the National Science Foundation announced a new AI initiative – The National Artificial Intelligence Research Institutes program – with plans to invest about “$120 million in grants next year... Read more…

By Staff report

DOE Sets Sights on Accelerating AI (and other) Technology Transfer

October 3, 2019

For the past two days DOE leaders along with ~350 members from academia and industry gathered in Chicago to discuss AI development and the ways in which industr Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

ISC Keynote: Thomas Sterling’s Take on Whither HPC

June 20, 2019

Entertaining, insightful, and unafraid to launch the occasional verbal ICBM, HPC pioneer Thomas Sterling delivered his 16th annual closing keynote at ISC yesterday. He explored, among other things: exascale machinations; quantum’s bubbling money pot; Arm’s new HPC viability; Europe’s... Read more…

By John Russell

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This