UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

By John Russell

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing – Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing.

You may recall the first paper (Above the Clouds: A Berkeley View of Cloud Computing) provided a detailed portrait of cloud computing’s past, present, and future as envisioned by the researchers. Published on February 9, 2009, it has garnered more than 17,000 citations including more than 1,000 in the past year. Not bad.

The new paper[i], dated Feb 10, 2019, takes a few modest bows for past prescience and then plunges into serverless computing, what it is, what the challenges are, and, of course, offers concluding predictions (presented below) without which any such report would be remiss. The paper was issued by authors from the Electrical Engineering and Computer Sciences, UC Berkeley and includes two notable repeats from the original paper: David Patterson (now an emeritus professor) and Ion Stoica.

Here’s a portion of the abstract:

“Serverless cloud computing handles virtually all the system administration operations needed to make it easier for programmers to use the cloud. It provides an interface that greatly simplifies cloud programming, and represents an evolution that parallels the transition from assembly language to high-level programming languages. This paper gives a quick history of cloud computing, including an accounting of the predictions of the 2009 Berkeley View of Cloud Computing paper, explains the motivation for serverless computing, describes applications that stretch the current limits of serverless, and then lists obstacles and research opportunities required for serverless computing to fulfill its full potential.”

Without doubt, the notion of serverless computing is on the rise. In theory, a user “just writes a cloud function in a high-level language, picks the event that should trigger the running of the function—such as loading an image into cloud storage or adding an image thumbnail to a database table—and lets the serverless system handle everything else: instance selection, scaling, deployment, fault tolerance, monitoring, logging, security patches, and so on,” they write.

The researchers bullet out three key distinctions between serverless and serverful clouds:

  • Decoupled computation and storage. The storage and computation scale separately and are provisioned and priced independently. In general, the storage is provided by a separate cloud service and the computation is stateless.
  • Executing code without managing resource allocation. Instead of requesting resources, the user provides a piece of code and the cloud automatically provisions resources to execute that code.
  • Paying in proportion to resources used instead of for resources allocated. Billing is by some dimension associated with the execution, such as execution time, rather than by a dimension of the base cloud platform, such as size and number of VMs allocated.

A few observers say the idea is old hat. The authors counter:

“Some have argued that serverless computing is merely a rebranding of preceding offerings, perhaps a modest generalization of Platform as a Service (PaaS) cloud products such as Heroku, Firebase, or Parse. Others might point out that the shared web hosting environments popular in the 1990s provided much of what serverless computing has to offer. For example, these had a stateless programming model allowing high levels of multi-tenancy, elastic response to variable demand, and a standardized function invocation API, the Common Gateway Interface (CGI), which even allowed direct deployment of source code written in high-level languages such as Perl or PHP. Google’s original App Engine, largely rebuffed by the market just a few years before serverless computing gained in popularity, also allowed developers to deploy code while leaving most aspects of operations to the cloud provider. We believe serverless computing represents significant innovation over PaaS and other previous models.

“Today’s serverless computing with cloud functions differs from its predecessors in several essential ways: better autoscaling, strong isolation, platform flexibility, and service ecosystem support. Among these factors, the autoscaling offered by AWS Lambda marked a striking departure from what came before. It tracked load with much greater fidelity than serverful autoscaling techniques, responding quickly to scale up when needed and scaling all the way down to zero resources, and zero cost, in the absence of demand. It charged in a much more fine-grained way, providing a minimum billing increment of 100 ms at a time when other autoscaling services charged by the hour. In a critical departure, it charged the customer for the time their code was actually executing, not for the resources reserved to execute their program. This distinction ensured the cloud provider had “skin in the game” on autoscaling, and consequently provided incentives to ensure efficient resource allocation.”

There’s a lot to unpack here (apologies to the authors for excerpting so much of their work but it seemed the best way to minimize insertion of error). The paper is best read in full and the authors don’t shrink from laying out challenges (abstraction, system, networking, security, and architecture) and take a stab at identifying “fallacies and pitfalls.” They also examine several applications for serverless computing suitability including, for example, these two typical HPC and machine learning apps:

  • “Numpywren: Linear algebra. Large scale linear algebra computations are traditionally deployed on supercomputers or high-performance computing clusters connected by high-speed, low-latency networks. Given this history, serverless computing initially seems a poor fit. Yet there are two reasons why serverless computing might still make sense for linear algebra computations. First, managing clusters is a big barrier for many non-CS scientists [27]. Second, the amount of parallelism can vary dramatically during a computation. Provisioning a cluster with a fixed size will either slow down the job or leave the cluster underutilized
  • “Cirrus: Machine learning training. Machine Learning (ML) researchers have traditionally used clusters of VMs for different tasks in ML workflows such as preprocessing, model training, and hyperparameter tuning. One challenge with this approach is that different stages of this pipeline can require significantly different amounts of resources. As with linear algebra algorithms, a fixed cluster size will either lead to severe underutilization or severe slowdown. Serverless computing can address this challenge by enabling every stage to scale to meet its resource demands. Further, it frees developers from managing clusters.”

Time will tell how closely this latest portrait of cloud computing matches what actually unfolds.

The authors contend that by providing a simplified programming environment, serverless computing makes the cloud much easier to use, thereby attracting more people who can and will use it.

“Serverless computing comprises FaaS (function as a service) and BaaS (back end as a service) offerings, and marks an important maturation of cloud programming. It obviates the need for manual resource management and optimization that today’s serverful computing imposes on application developers, a maturation akin to the move from assembly language to high-level languages more than four decades ago,” they write.

They offer the following predictions about serverless computing in the next decade (bold added):

  • We expect new BaaS storage services to be created that expand the types of applications that run well on serverless computing. Such storage will match the performance of local block storage and come in ephemeral and durable variants. We will see much more heterogeneity of computer hardware for serverless computing than the conventional x86 microprocessor that powers it today.
  • We expect serverless computing to become simpler to program securely than serverful computing, benefiting from the high level of programming abstraction and the fine-grained isolation of cloud functions.
  • We see no fundamental reason why the cost of serverless computing should be higher than that of serverful computing, so we predict that billing models will evolve so that almost any application, running at almost any scale, will cost no more and perhaps much less with serverless computing.
  • The future of serverful computing will be to facilitate BaaS. Applications that prove to be difficult to write on top of serverless computing, such as OLTP databases or communication primitives such as queues, will likely be offered as part of a richer set of services from all cloud providers.
  • While serverful cloud computing won’t disappear, the relative importance of that portion of the cloud will decline as serverless computing overcomes its current limitations.

[i]Cloud Programming Simplified: A Berkeley View on Serverless Computing,

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth, Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica and David A. Patterson, https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf

Source: Figure & Table from the paper

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digita Read more…

By Aaron Dubrow

Supercomputers Help Predict Carbon Dioxide Levels

December 10, 2019

The Earth’s terrestrial ecosystems – its lands, forests, jungles and so on – are crucial “sinks” for atmospheric carbon, holding nearly 30 percent of our annual CO2 emissions as they breathe in the carbon-rich Read more…

By Oliver Peckham

Finally! SC19 Competitors Live and in Color!

December 10, 2019

You know the saying “better late than never”? That’s how my cluster competition coverage is faring this year. With SC19 coming late in November, quickly followed by my annual trip to South Africa to cover their clu Read more…

By Dan Olds

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum processor chips. The new controller is a mixed-signal SoC named Ho Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This