UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

By John Russell

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing – Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing.

You may recall the first paper (Above the Clouds: A Berkeley View of Cloud Computing) provided a detailed portrait of cloud computing’s past, present, and future as envisioned by the researchers. Published on February 9, 2009, it has garnered more than 17,000 citations including more than 1,000 in the past year. Not bad.

The new paper[i], dated Feb 10, 2019, takes a few modest bows for past prescience and then plunges into serverless computing, what it is, what the challenges are, and, of course, offers concluding predictions (presented below) without which any such report would be remiss. The paper was issued by authors from the Electrical Engineering and Computer Sciences, UC Berkeley and includes two notable repeats from the original paper: David Patterson (now an emeritus professor) and Ion Stoica.

Here’s a portion of the abstract:

“Serverless cloud computing handles virtually all the system administration operations needed to make it easier for programmers to use the cloud. It provides an interface that greatly simplifies cloud programming, and represents an evolution that parallels the transition from assembly language to high-level programming languages. This paper gives a quick history of cloud computing, including an accounting of the predictions of the 2009 Berkeley View of Cloud Computing paper, explains the motivation for serverless computing, describes applications that stretch the current limits of serverless, and then lists obstacles and research opportunities required for serverless computing to fulfill its full potential.”

Without doubt, the notion of serverless computing is on the rise. In theory, a user “just writes a cloud function in a high-level language, picks the event that should trigger the running of the function—such as loading an image into cloud storage or adding an image thumbnail to a database table—and lets the serverless system handle everything else: instance selection, scaling, deployment, fault tolerance, monitoring, logging, security patches, and so on,” they write.

The researchers bullet out three key distinctions between serverless and serverful clouds:

  • Decoupled computation and storage. The storage and computation scale separately and are provisioned and priced independently. In general, the storage is provided by a separate cloud service and the computation is stateless.
  • Executing code without managing resource allocation. Instead of requesting resources, the user provides a piece of code and the cloud automatically provisions resources to execute that code.
  • Paying in proportion to resources used instead of for resources allocated. Billing is by some dimension associated with the execution, such as execution time, rather than by a dimension of the base cloud platform, such as size and number of VMs allocated.

A few observers say the idea is old hat. The authors counter:

“Some have argued that serverless computing is merely a rebranding of preceding offerings, perhaps a modest generalization of Platform as a Service (PaaS) cloud products such as Heroku, Firebase, or Parse. Others might point out that the shared web hosting environments popular in the 1990s provided much of what serverless computing has to offer. For example, these had a stateless programming model allowing high levels of multi-tenancy, elastic response to variable demand, and a standardized function invocation API, the Common Gateway Interface (CGI), which even allowed direct deployment of source code written in high-level languages such as Perl or PHP. Google’s original App Engine, largely rebuffed by the market just a few years before serverless computing gained in popularity, also allowed developers to deploy code while leaving most aspects of operations to the cloud provider. We believe serverless computing represents significant innovation over PaaS and other previous models.

“Today’s serverless computing with cloud functions differs from its predecessors in several essential ways: better autoscaling, strong isolation, platform flexibility, and service ecosystem support. Among these factors, the autoscaling offered by AWS Lambda marked a striking departure from what came before. It tracked load with much greater fidelity than serverful autoscaling techniques, responding quickly to scale up when needed and scaling all the way down to zero resources, and zero cost, in the absence of demand. It charged in a much more fine-grained way, providing a minimum billing increment of 100 ms at a time when other autoscaling services charged by the hour. In a critical departure, it charged the customer for the time their code was actually executing, not for the resources reserved to execute their program. This distinction ensured the cloud provider had “skin in the game” on autoscaling, and consequently provided incentives to ensure efficient resource allocation.”

There’s a lot to unpack here (apologies to the authors for excerpting so much of their work but it seemed the best way to minimize insertion of error). The paper is best read in full and the authors don’t shrink from laying out challenges (abstraction, system, networking, security, and architecture) and take a stab at identifying “fallacies and pitfalls.” They also examine several applications for serverless computing suitability including, for example, these two typical HPC and machine learning apps:

  • “Numpywren: Linear algebra. Large scale linear algebra computations are traditionally deployed on supercomputers or high-performance computing clusters connected by high-speed, low-latency networks. Given this history, serverless computing initially seems a poor fit. Yet there are two reasons why serverless computing might still make sense for linear algebra computations. First, managing clusters is a big barrier for many non-CS scientists [27]. Second, the amount of parallelism can vary dramatically during a computation. Provisioning a cluster with a fixed size will either slow down the job or leave the cluster underutilized
  • “Cirrus: Machine learning training. Machine Learning (ML) researchers have traditionally used clusters of VMs for different tasks in ML workflows such as preprocessing, model training, and hyperparameter tuning. One challenge with this approach is that different stages of this pipeline can require significantly different amounts of resources. As with linear algebra algorithms, a fixed cluster size will either lead to severe underutilization or severe slowdown. Serverless computing can address this challenge by enabling every stage to scale to meet its resource demands. Further, it frees developers from managing clusters.”

Time will tell how closely this latest portrait of cloud computing matches what actually unfolds.

The authors contend that by providing a simplified programming environment, serverless computing makes the cloud much easier to use, thereby attracting more people who can and will use it.

“Serverless computing comprises FaaS (function as a service) and BaaS (back end as a service) offerings, and marks an important maturation of cloud programming. It obviates the need for manual resource management and optimization that today’s serverful computing imposes on application developers, a maturation akin to the move from assembly language to high-level languages more than four decades ago,” they write.

They offer the following predictions about serverless computing in the next decade (bold added):

  • We expect new BaaS storage services to be created that expand the types of applications that run well on serverless computing. Such storage will match the performance of local block storage and come in ephemeral and durable variants. We will see much more heterogeneity of computer hardware for serverless computing than the conventional x86 microprocessor that powers it today.
  • We expect serverless computing to become simpler to program securely than serverful computing, benefiting from the high level of programming abstraction and the fine-grained isolation of cloud functions.
  • We see no fundamental reason why the cost of serverless computing should be higher than that of serverful computing, so we predict that billing models will evolve so that almost any application, running at almost any scale, will cost no more and perhaps much less with serverless computing.
  • The future of serverful computing will be to facilitate BaaS. Applications that prove to be difficult to write on top of serverless computing, such as OLTP databases or communication primitives such as queues, will likely be offered as part of a richer set of services from all cloud providers.
  • While serverful cloud computing won’t disappear, the relative importance of that portion of the cloud will decline as serverless computing overcomes its current limitations.

[i]Cloud Programming Simplified: A Berkeley View on Serverless Computing,

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth, Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica and David A. Patterson, https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf

Source: Figure & Table from the paper

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the Read more…

By Tiffany Trader

Microsoft’s Azure Quantum Platform Now Offers Toshiba’s ‘Simulated Bifurcation Machine’

September 22, 2020

While pure-play quantum computing (QC) gets most of the QC-related attention, there’s also been steady progress adapting quantum methods for select use on classical computers. Today, Microsoft announced that Toshiba’ Read more…

By John Russell

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availability of instances with Nvidia’s newest GPU, the A100. OCI als Read more…

By John Russell

IBM, CQC Enable Cloud-based Quantum Random Number Generation

September 21, 2020

IBM and Cambridge Quantum Computing (CQC) have partnered to achieve progress on one of the major business aspirations for quantum computing – the goal of generating verified, truly random numbers that can be used for a Read more…

By Todd R. Weiss

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at current count) across the European Union and supplanting HPC Read more…

By Oliver Peckham

AWS Solution Channel

Next-generation aerospace modeling and simulation: benchmarking Amazon Web Services High Performance Computing services

The aerospace industry has been using Computational Fluid Dynamics (CFD) for decades to create and optimize designs digitally, from the largest passenger planes and fighter jets to gliders and drones. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for high-performance computing, a newly created position that is a Read more…

By Tiffany Trader

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s seco Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Nvidia Commits to Buy Arm for $40B

September 14, 2020

Nvidia is acquiring semiconductor design company Arm Ltd. for $40 billion from SoftBank in a blockbuster deal that catapults the GPU chipmaker to a dominant position in the datacenter while helping troubled SoftBank reverse its financial woes. The deal, which has been rumored for... Read more…

By Todd R. Weiss and George Leopold

AMD’s Massive COVID-19 HPC Fund Adds 18 Institutions, 5 Petaflops of Power

September 14, 2020

Almost exactly five months ago, AMD announced its COVID-19 HPC Fund, an ongoing flow of resources and equipment to research institutions studying COVID-19 that began with an initial donation of $15 million. In June, AMD announced major equipment donations to several major institutions. Now, AMD is making its third major COVID-19 HPC Fund... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This