D-Wave Previews Next-Gen Platform; Debuts Pegasus Topology; Targets 5000 Qubits

By John Russell

February 27, 2019

Quantum computing pioneer D-Wave Systems today “previewed” plans for its next-gen adiabatic annealing quantum computing platform which will feature a new underlying fab technology, reduced noise, increased connectivity, 5000-qubit processors, and an expanded toolset for creation of hybrid quantum-classical applications. The company plans to “incrementally” roll out platform elements over the next 18 months.

One major change is implementation of a new topology, Pegasus, in which each qubit is connected to 15 other qubits making it “the most connected of any commercial quantum system in the world,” according to D-Wave. In the current topology, Chimera, each qubit is connected to six other qubits. The roughly 2.5x jump in connectivity will enable users to tackle larger problems with fewer qubits and achieve better performance reports D-Wave.

“The reason we are announcing the preview now is because we will be making this technology available incrementally over the next 18 months and we wanted to provide a framework,” Alan Baratz, executive vice president, R&D and Chief Product Officer, D-Wave, told HPCwire. The plan, he said, is “to start by talking about the new topology now, how it fits into the whole. Then we’ll be announcing new tools, how they fit in. Next you’ll start to see some of the new low noise technology – that will initially be on our current generation system and you’ll see that in the cloud.” The final piece will be early versions of the 5000-qubit next generation systems.

It’s an ambitious plan. Identifying significant milestones now, but without specific dates, is an interesting gambit. Starting now, users can use D-Wave’s Ocean development tools which include compilers for porting of problems into the Pegasus topology. D-Wave launched its cloud-accessed development platform last fall – LEAP – and many of the new features and tools will show up there first (see HPCwire article, D-Wave Is Latest to Offer Quantum Cloud Platform).

Bob Sorensen, VP of research and technology and chief analyst for quantum computing, Hyperion

Bob Sorensen, chief analyst for quantum computing at Hyperion Research, had a positive reaction to D-Wave’s plan, “This announcement indicates that D-Wave continues to advance the state of the art in its quantum computing efforts. Although the increase from 2000 to 5000 qubits is impressive in itself, what strikes me is the new Pegasus topology. I expect that this increased connectivity will prove to be a major driver of new, interesting, and heretofore unrealizable QC algorithms and applications. Finally, I think it is important to note that D-Wave continues to listen to its wide, growing, and increasingly experienced customer base to help guide D-Wave’s future system designs. Being able to tap into the collective expertise of such a user base continues to be a critical element driving the evolution of D-Wave systems.”

Altogether, says D-Wave, the features of its next-gen system are expected to accelerate the race for commercial relevance and so-called quantum advantage – the goal of solving a problem sufficiently better on a quantum computer than on a classical computer to warrant switching to quantum computing for that application. D-Wave has aggressively marketed its success selling machines to commercial and government customers and says those users have developed “more than 100 early applications in areas as diverse as airline scheduling, election modeling, quantum chemistry simulation, automotive design, preventative healthcare, logistics and more.” How ready those apps are is sometimes debated. In any case, Baratz expects the next gen platform to have enough power (compute, developer tools, etc.) to lead to demonstrating customer advantage.

Sorensen is more circumspect about quantum advantage’s importance, “To my mind, the issue of quantum advantage is not a critical one. I really don’t think most users care about a somewhat artificial milestone. What matters is the development of algorithms/applications that bring a new capability to an existing problem or offer some significant speed-up over an existing application. Give a user 50X performance improvement and he/she is not going to lose much sleep debating quantum advantage.

“Bottom line. If at some point the headline reads, “Company Z demonstrates quantum advantage in algorithm X,” what will that mean to the existing and potential QC user base writ large? Not much I suspect. Not without a spate of algorithms to back it up.”

Here are marketing bullet points as excerpted from D-Wave’s announcement:

  • New Topology: Pegasus is the most connected of any commercial quantum system in the world. Each qubit is connected to 15 other qubits (compared to Chimera’s 6), giving it 2.5x more connectivity. It enables embedding of larger problems with fewer physical qubits. The D-Wave Ocean software development kit (SDK) includes tools for generating the Pegasus topology. Interested users can try embedding their problems on Pegasus.
  • “Lower Noise: next generation system will include the lowest noise commercially-available quantum processing units (QPUs) ever produced by D-Wave. This new QPU fabrication technology improves system performance and solution precision to pave the way to greater speedups.
  • “Increased Qubit Count: with more than 5000 qubits, the next generation platform will more than double the qubit count of the existing D-Wave 2000Q. Gives programmers access to a larger, denser, more powerful graph for building commercial quantum applications.
  • “Expansion of Hybrid Software & Tools: Investments in ease-of-use, automation and provide a more powerful hybrid development environment building upon D-Wave Hybrid. Allows allowing developers to run across classical and the next-generation quantum platforms in Python and other common languages. Modular approach incorporates logic to simplify distribution, allowing developers to interrupt processing and synchronize across systems to draw maximum computing power out of each system.
  • “Ongoing Releases: components of the D-Wave next generation quantum platform will come to market between now and mid-2020 via ongoing QPU and software updates available through the cloud. The complete system will be available through cloud and on-premise in mid-2020. Users can get explore a simulation of the new Pegasus topology today.

D-Wave didn’t reveal much detail of the enabling technology advances. Mark Johnson, VP, processor design & development said, “In terms of the integrated circuit we have basically redone the stack and that allowed us to make the design more compact. It also allowed us to get more connectivity. We are also making changes within that stack to reduce the intrinsic contribution to noise and decoherence from the materials. We’re not going to be talking about the recipe, just realize it is a fundamental technology node change, [with] new materials, a new fabrication processes, a new stack.”

Baratz said, “I’d add only that the new materials and processes are not just ‘in design’. We’ve actually used them on our current generation system, our 2000 qubit system. We’ve rebuilt it, using this newer technology stack, have several of them operating in our lab now, and are seeing the results from it we expected to see.”

D-Wave 2000Q System

The lower noise technology, said Baratz, will enable longer coherence times and higher quality solutions. The new operating software “will be designed specifically to support hybrid applications and that means we will be significantly reducing latency. This is important for hybrid applications where you run part classically and send to the quantum processors, get the result, run classically, and back and forth,” he said. For LEAP users, D-Wave will also offer new scheduling options so instead of having to run in a queue, users can reserve blocks of time if necessary to run a longer applications.

A brief review on the D-Wave approach may be useful. It differs rather dramatically from the universal gate-based model. With a gate-model quantum computer you have to specify the sequence of instructions and gates required to solve the problem. In that sense it’s a bit more like programming a classical system where you have to specify the sequence of instructions.

“For our system you don’t do that,” said Baratz. “All you do is specify the problem in a mathematical formulation that our system understands. It understands two different formulations. One of them is the quadratic binary optimization problem. The other is an Ising optimization problem. It’s basically a well-defined mathematical construct. So really programming our system has nothing to do with physics, nothing to do with qubits, nothing to do with entanglement, nothing to do with tuning with pulses; it is about mapping your problem into this mathematical formulation. It’s more like a declarative programing model where you don’t really have to specify the sequence of instruction. As a result it’s much easier to program.”

This description of how D-Wave systems work, taken from D-Wave’s site, may be helpful:

“In nature, physical systems tend to evolve toward their lowest energy state: objects slide down hills, hot things cool down, and so on. This behavior also applies to quantum systems. To imagine this, think of a traveler looking for the best solution by finding the lowest valley in the energy landscape that represents the problem.

“Classical algorithms seek the lowest valley by placing the traveler at some point in the landscape and allowing that traveler to move based on local variations. While it is generally most efficient to move downhill and avoid climbing hills that are too high, such classical algorithms are prone to leading the traveler into nearby valleys that may not be the global minimum. Numerous trials are typically required, with many travelers beginning their journeys from different points.

‘In contrast, quantum annealing begins with the traveler simultaneously occupying many coordinates thanks to the quantum phenomenon of superposition. The probability of being at any given coordinate smoothly evolves as annealing progresses, with the probability increasing around the coordinates of deep valleys. Quantum tunneling allows the traveler to pass through hills—rather than be forced to climb them—reducing the chance of becoming trapped in valleys that are not the global minimum. Quantum entanglement further improves the outcome by allowing the traveler to discover correlations between the coordinates that lead to deep valleys.”

Like its quantum computing rivals IBM and Rigetti, D-Wave is betting heavily on cloud-delivery as both a means for attracting and training QC users as well as offering production capability. Of course, D-Wave is still the only vendor selling systems outright for on premise, though IBM’s new IBM Q System One seems to be a step in that direction.

D-Wave has made it quite easy to create a LEAP account. Users can get one minute of free time to try out the system and one minute per month on an ongoing basis for free if they agree to open source any work created. Baratz says a minute of time buys more than you think (~400-to-4,000 experiments). Fees for commercial use start at $2,000 per hour per month with discounts if you sign up for longer periods of time.

No doubt quantum watchers will monitor how well and how timely D-Wave delivers on its promise. There has been no shortage of optimism from the QC development community (vendor and academia). Likewise the recent $1.25 billion U.S. Quantum Initiative, passed in December, has added to the chorus of those arguing there’s a global quantum computing race with high stakes at risk. We’ll see.

Feature Image: Illustration of Pegasus connectivity, Source: D-Wave Systems

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Energy Exascale Earth System Model Version 2 Promises Twice the Speed

October 18, 2021

The Energy Exascale Earth System Model (E3SM) is an ongoing Department of Energy (DOE) earth system modeling, simulation and prediction project aiming to “assert and maintain an international scientific leadership posi Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire