Architecting for AI Workloads

March 4, 2019

Artificial intelligence has come of age. To capitalize fully on the opportunities, organizations need to design high-performance computing architectures for AI workloads.

After years of talking about the promise of artificial intelligence, enterprises around the world are now diving headfirst into AI-driven processes and business models. From financial services to manufacturing, from healthcare to retail, enterprises are now “all in” with AI and its supporting computing models — notably machine and deep learning. The same holds true for universities and government agencies. They are using AI for countless pursuits, from driving groundbreaking scientific discoveries to protecting our national security.

This widespread embrace of all things AI is fueled by the rise of more powerful processors and accelerators, advanced tools and techniques for data analytics, more precise algorithms and — most of all — an explosion of data, driven to a large degree by the Internet of Things. When you put it all together, you’ve got what it takes to put AI to work in countless applications.

Architecting for AI workloads

To capitalize fully on the opportunities in today’s data-driven world, IT organizations need to design high-performance computing architectures to accommodate demanding AI workloads. The HPC and AI community has started optimizing AI frameworks and developer tools to address performance needs, allowing for much larger batch sizes to be processed on industry standard CPUs. Within the last year, Intel® has seen up to 241x training performance gains through optimized frameworks with Intel® Math Kernel Library (MKL) on Intel Xeon® Scalable Processors over Haswell processors. This can take your time to train from hours to minutes, while these optimizations provide the eco-system greater access to AI capabilities.

This shift to AI-focused infrastructure is happening today as organizations roll out systems that bring together the capabilities of HPC, data analytics and AI. This is the case with the University of Cambridge’s latest supercomputer, called Cumulus. This groundbreaking system was designed to serve as a single HPC cluster that supports researchers’ needs for data analytics, machine learning and large-scale data processing. The goal is to solve extremely difficult big data, simulation and AI challenges.

To meet this goal, the Cumulus architecture was designed to address the broad range of system challenges, including those at the compute, network, storage and software layers. A key objective was to make the infrastructure perform well for diverse, data-intensive research workloads.

The Cumulus system provides more than 2 petaflops of performance, powered by Dell EMC PowerEdge™ servers and Intel Xeon Scalable processors, all connected via the Intel Omni-Path Architecture (OPA). The system incorporates OpenStack® software to control pools of compute, storage and networking resources and make them readily accessible to users via a cloud interface.

Solving for I/O bottlenecks

This architectural foundation alone doesn’t necessarily solve today’s persistent I/O challenges in HPC clusters. Here’s the problem: While data-processing power has raced forward in recent years, storage I/O limitations have created bottlenecks that slow time to insight, particularly for researchers running data-centric workloads that interact continuously with data storage systems.

The Cumulus system removes these bottlenecks with a unique solution called the Data Accelerator (aka DAC), which is designed into the network topology. DAC incorporates technologies from Dell EMC, Intel  and Cambridge University. In this architecture, the DAC nodes work in conjunction with the Distributed Name Space (DNE) feature in the Lustre file system and Intel® Omni-Path switches to accelerate system I/O.

The results of this accelerated architecture have been rather amazing. With DAC under the hood, Cumulus provides more than 500 GB/s of I/O read performance, which makes it the UK’s fastest HPC I/O platform, according to the university’s Research Computing Service, which operates the Cumulus cluster.[1]

In benchmark testing, the Cumulus system achieved an IO-500 score of 158.7, which ranked the system third on the November 2018 IO-500 list. For system users, these numbers equate to big improvements in I/O performance for data-intensive HPC and AI workloads — and faster time to insight.

Building the right foundation for new and emerging workloads

For organizations searching for the right IT foundation for AI workloads, Intel offers expert insights in its high-level Guide to Developing an AI Infrastructure Strategy. The options outlined in this guide range from starting from scratch with your current systems to outsourcing your entire solution. One of these options is to build a broad platform that is designed to support a wide range of AI workloads — which is the approach the University of Cambridge took with its Cumulus system.

The guide explains: “This approach is similar to the emerging ‘platform’ architecture we now see prevalent across IT — that is, an approach that provides a highly scalable infrastructure layer that can be managed as a single pool, using virtualization and software-defined orchestration across server processing, storage and networking.”[2]

The guide presents this broad-platform infrastructure strategy in terms of a three-tier stack, with hardware, software and process layers that work together to enable AI workloads. A few highlights from this architecture:

  • At the hardware layer, communication between devices and systems is based around an ultra-high speed backbone, such as the Intel® Omni-Path.
  • The software layer includes operating system and virtualization layers, which support a library of AI-specific modules. These modules enable algorithmic processing and analytics, data management and I/O, as well as the delivery of data sources and the visualization of analysis results.
  • The process layer runs the business logic of the AI application, using library modules to deliver capabilities like image recognition.

Intel notes that this architecture results in a platform-based approach that offers a single point of configuration and a unique deployment target.

Key takeaways

The rise of artificial intelligence creates unprecedented opportunities for today’s enterprises. To fully capitalize on these opportunities, your organization needs a scalable HPC infrastructure that is specifically designed to incorporate the latest processor and fabric technologies, accommodate massive amounts of data, and leverage technologies to accelerate the data storage I/O and AI workloads.

To learn more

For a closer and more technical look at the University of Cambridge’s use of the Data Accelerator, visit the Research Computing Services’ Data Accelerator site. And for a broader look at the university’s Cumulus cluster, read the Dell EMC case study “UK Science Cloud.”

 

The Convergence of HPC, Analytics and AI

High-performance computing, data analytics and artificial intelligence no longer live in separate domains. These complementary technologies are rapidly converging as organizations work to gain greater value from the data they capture and store.


[1] Dell EMC case study, “UK Science Cloud,” November 2018.

 

[2] Intel, “Select the Best Infrastructure Strategy to Support Your AI Solution,” March 2018.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Amid Upbeat Earnings, Intel to Cut 1% of Employees, Add as Many

January 24, 2020

For all the sniping two tech old timers take, both IBM and Intel announced surprisingly upbeat earnings this week. IBM CEO Ginny Rometty was all smiles at this week’s World Economic Forum in Davos, Switzerland, after  Read more…

By Doug Black

Indiana University Dedicates ‘Big Red 200’ Cray Shasta Supercomputer

January 24, 2020

After six months of celebrations, Indiana University (IU) officially marked its bicentennial on Monday – and it saved the best for last, inaugurating Big Red 200, a new AI-focused supercomputer that joins the ranks of Read more…

By Staff report

What’s New in HPC Research: Tsunamis, Wildfires, the Large Hadron Collider & More

January 24, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware. In fact, the company's simulated bifurcation algorithm is Read more…

By Tiffany Trader

Energy Research Combines HPC, 3D Manufacturing

January 23, 2020

A federal energy research initiative is gaining momentum with the release of a contract award aimed at using supercomputing to harness 3D printing technology that would boost the performance of power generators. Partn Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

TACC Highlights Its Upcoming ‘IsoBank’ Isotope Database

January 22, 2020

Isotopes – elemental variations that contain different numbers of neutrons – can help researchers unearth the past of an object, especially the few hundred isotopes that are known to be stable over time. However, iso Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware Read more…

By Tiffany Trader

In Advanced Computing and HPC, Dell EMC Sets Sights on the Broader Market Middle 

January 22, 2020

If the leading advanced computing/HPC server vendors were in the batting lineup of a baseball team, Dell EMC would be going for lots of singles and doubles – Read more…

By Doug Black

DNA-Based Storage Nears Scalable Reality with New $25 Million Project

January 21, 2020

DNA-based storage, which involves storing binary code in the four nucleotides that constitute DNA, has been a moonshot for high-density data storage since the 1960s. Since the first successful experiments in the 1980s, researchers have made a series of major strides toward implementing DNA-based storage at scale, such as improving write times and storage density and enabling easier file identification and extraction. Now, a new $25 million... Read more…

By Oliver Peckham

AMD Recruits Intel, IBM Execs; Pending Layoffs Reported at Intel Data Platform Group

January 17, 2020

AMD has raided Intel and IBM for new senior managers, one of whom will replace an AMD executive who has played a prominent role during the company’s recharged Read more…

By Doug Black

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This