Architecting for AI Workloads

March 4, 2019

Artificial intelligence has come of age. To capitalize fully on the opportunities, organizations need to design high-performance computing architectures for AI workloads.

After years of talking about the promise of artificial intelligence, enterprises around the world are now diving headfirst into AI-driven processes and business models. From financial services to manufacturing, from healthcare to retail, enterprises are now “all in” with AI and its supporting computing models — notably machine and deep learning. The same holds true for universities and government agencies. They are using AI for countless pursuits, from driving groundbreaking scientific discoveries to protecting our national security.

This widespread embrace of all things AI is fueled by the rise of more powerful processors and accelerators, advanced tools and techniques for data analytics, more precise algorithms and — most of all — an explosion of data, driven to a large degree by the Internet of Things. When you put it all together, you’ve got what it takes to put AI to work in countless applications.

Architecting for AI workloads

To capitalize fully on the opportunities in today’s data-driven world, IT organizations need to design high-performance computing architectures to accommodate demanding AI workloads. The HPC and AI community has started optimizing AI frameworks and developer tools to address performance needs, allowing for much larger batch sizes to be processed on industry standard CPUs. Within the last year, Intel® has seen up to 241x training performance gains through optimized frameworks with Intel® Math Kernel Library (MKL) on Intel Xeon® Scalable Processors over Haswell processors. This can take your time to train from hours to minutes, while these optimizations provide the eco-system greater access to AI capabilities.

This shift to AI-focused infrastructure is happening today as organizations roll out systems that bring together the capabilities of HPC, data analytics and AI. This is the case with the University of Cambridge’s latest supercomputer, called Cumulus. This groundbreaking system was designed to serve as a single HPC cluster that supports researchers’ needs for data analytics, machine learning and large-scale data processing. The goal is to solve extremely difficult big data, simulation and AI challenges.

To meet this goal, the Cumulus architecture was designed to address the broad range of system challenges, including those at the compute, network, storage and software layers. A key objective was to make the infrastructure perform well for diverse, data-intensive research workloads.

The Cumulus system provides more than 2 petaflops of performance, powered by Dell EMC PowerEdge™ servers and Intel Xeon Scalable processors, all connected via the Intel Omni-Path Architecture (OPA). The system incorporates OpenStack® software to control pools of compute, storage and networking resources and make them readily accessible to users via a cloud interface.

Solving for I/O bottlenecks

This architectural foundation alone doesn’t necessarily solve today’s persistent I/O challenges in HPC clusters. Here’s the problem: While data-processing power has raced forward in recent years, storage I/O limitations have created bottlenecks that slow time to insight, particularly for researchers running data-centric workloads that interact continuously with data storage systems.

The Cumulus system removes these bottlenecks with a unique solution called the Data Accelerator (aka DAC), which is designed into the network topology. DAC incorporates technologies from Dell EMC, Intel  and Cambridge University. In this architecture, the DAC nodes work in conjunction with the Distributed Name Space (DNE) feature in the Lustre file system and Intel® Omni-Path switches to accelerate system I/O.

The results of this accelerated architecture have been rather amazing. With DAC under the hood, Cumulus provides more than 500 GB/s of I/O read performance, which makes it the UK’s fastest HPC I/O platform, according to the university’s Research Computing Service, which operates the Cumulus cluster.[1]

In benchmark testing, the Cumulus system achieved an IO-500 score of 158.7, which ranked the system third on the November 2018 IO-500 list. For system users, these numbers equate to big improvements in I/O performance for data-intensive HPC and AI workloads — and faster time to insight.

Building the right foundation for new and emerging workloads

For organizations searching for the right IT foundation for AI workloads, Intel offers expert insights in its high-level Guide to Developing an AI Infrastructure Strategy. The options outlined in this guide range from starting from scratch with your current systems to outsourcing your entire solution. One of these options is to build a broad platform that is designed to support a wide range of AI workloads — which is the approach the University of Cambridge took with its Cumulus system.

The guide explains: “This approach is similar to the emerging ‘platform’ architecture we now see prevalent across IT — that is, an approach that provides a highly scalable infrastructure layer that can be managed as a single pool, using virtualization and software-defined orchestration across server processing, storage and networking.”[2]

The guide presents this broad-platform infrastructure strategy in terms of a three-tier stack, with hardware, software and process layers that work together to enable AI workloads. A few highlights from this architecture:

  • At the hardware layer, communication between devices and systems is based around an ultra-high speed backbone, such as the Intel® Omni-Path.
  • The software layer includes operating system and virtualization layers, which support a library of AI-specific modules. These modules enable algorithmic processing and analytics, data management and I/O, as well as the delivery of data sources and the visualization of analysis results.
  • The process layer runs the business logic of the AI application, using library modules to deliver capabilities like image recognition.

Intel notes that this architecture results in a platform-based approach that offers a single point of configuration and a unique deployment target.

Key takeaways

The rise of artificial intelligence creates unprecedented opportunities for today’s enterprises. To fully capitalize on these opportunities, your organization needs a scalable HPC infrastructure that is specifically designed to incorporate the latest processor and fabric technologies, accommodate massive amounts of data, and leverage technologies to accelerate the data storage I/O and AI workloads.

To learn more

For a closer and more technical look at the University of Cambridge’s use of the Data Accelerator, visit the Research Computing Services’ Data Accelerator site. And for a broader look at the university’s Cumulus cluster, read the Dell EMC case study “UK Science Cloud.”


The Convergence of HPC, Analytics and AI

High-performance computing, data analytics and artificial intelligence no longer live in separate domains. These complementary technologies are rapidly converging as organizations work to gain greater value from the data they capture and store.

[1] Dell EMC case study, “UK Science Cloud,” November 2018.


[2] Intel, “Select the Best Infrastructure Strategy to Support Your AI Solution,” March 2018.


Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

U.S. CTO Michael Kratsios Adds DoD Research & Engineering Title

July 13, 2020

Michael Kratsios, the U.S. Chief Technology Officer, has been appointed acting Undersecretary of Defense for research and engineering. He replaces Mike Griffin, who along with his deputy Lis Porter, stepped down last wee Read more…

By John Russell

Supercomputer Research Reveals Star Cluster Born Outside Our Galaxy

July 11, 2020

The Milky Way is our galactic home, containing our solar system and continuing into a giant band of densely packed stars that stretches across clear night skies around the world – but, it turns out, not all of those st Read more…

By Oliver Peckham

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprised of Intel Xeon processors and Nvidia A100 GPUs, and featuri Read more…

By Tiffany Trader

Xilinx Announces First Adaptive Computing Challenge

July 9, 2020

A new contest is challenging the computing world. Xilinx has announced the first Xilinx Adaptive Computing Challenge, a competition that will task developers and startups with finding creative workload acceleration solutions. Xilinx is running the Adaptive Computing Challenge in partnership with, a developing community... Read more…

By Staff report

Reviving Moore’s Law? LBNL Researchers See Promise in Heterostructure Oxides

July 9, 2020

The reality of Moore’s law’s decline is no longer doubted for good empirical reasons. That said, never say never. Recent work by Lawrence Berkeley National Laboratory researchers suggests heterostructure oxides may b Read more…

By John Russell

AWS Solution Channel

Best Practices for Running Computational Fluid Dynamics (CFD) Workloads on AWS

The scalable nature and variable demand of CFD workloads makes them well-suited for a cloud computing environment. Many of the AWS instance types, such as the compute family instance types, are designed to include support for this type of workload.  Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: 1) Industries of the Future (IotF), chaired be Dario Gil (d Read more…

By John Russell

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers


Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This