Architecting for AI Workloads

March 4, 2019

Artificial intelligence has come of age. To capitalize fully on the opportunities, organizations need to design high-performance computing architectures for AI workloads.

After years of talking about the promise of artificial intelligence, enterprises around the world are now diving headfirst into AI-driven processes and business models. From financial services to manufacturing, from healthcare to retail, enterprises are now “all in” with AI and its supporting computing models — notably machine and deep learning. The same holds true for universities and government agencies. They are using AI for countless pursuits, from driving groundbreaking scientific discoveries to protecting our national security.

This widespread embrace of all things AI is fueled by the rise of more powerful processors and accelerators, advanced tools and techniques for data analytics, more precise algorithms and — most of all — an explosion of data, driven to a large degree by the Internet of Things. When you put it all together, you’ve got what it takes to put AI to work in countless applications.

Architecting for AI workloads

To capitalize fully on the opportunities in today’s data-driven world, IT organizations need to design high-performance computing architectures to accommodate demanding AI workloads. The HPC and AI community has started optimizing AI frameworks and developer tools to address performance needs, allowing for much larger batch sizes to be processed on industry standard CPUs. Within the last year, Intel® has seen up to 241x training performance gains through optimized frameworks with Intel® Math Kernel Library (MKL) on Intel Xeon® Scalable Processors over Haswell processors. This can take your time to train from hours to minutes, while these optimizations provide the eco-system greater access to AI capabilities.

This shift to AI-focused infrastructure is happening today as organizations roll out systems that bring together the capabilities of HPC, data analytics and AI. This is the case with the University of Cambridge’s latest supercomputer, called Cumulus. This groundbreaking system was designed to serve as a single HPC cluster that supports researchers’ needs for data analytics, machine learning and large-scale data processing. The goal is to solve extremely difficult big data, simulation and AI challenges.

To meet this goal, the Cumulus architecture was designed to address the broad range of system challenges, including those at the compute, network, storage and software layers. A key objective was to make the infrastructure perform well for diverse, data-intensive research workloads.

The Cumulus system provides more than 2 petaflops of performance, powered by Dell EMC PowerEdge™ servers and Intel Xeon Scalable processors, all connected via the Intel Omni-Path Architecture (OPA). The system incorporates OpenStack® software to control pools of compute, storage and networking resources and make them readily accessible to users via a cloud interface.

Solving for I/O bottlenecks

This architectural foundation alone doesn’t necessarily solve today’s persistent I/O challenges in HPC clusters. Here’s the problem: While data-processing power has raced forward in recent years, storage I/O limitations have created bottlenecks that slow time to insight, particularly for researchers running data-centric workloads that interact continuously with data storage systems.

The Cumulus system removes these bottlenecks with a unique solution called the Data Accelerator (aka DAC), which is designed into the network topology. DAC incorporates technologies from Dell EMC, Intel  and Cambridge University. In this architecture, the DAC nodes work in conjunction with the Distributed Name Space (DNE) feature in the Lustre file system and Intel® Omni-Path switches to accelerate system I/O.

The results of this accelerated architecture have been rather amazing. With DAC under the hood, Cumulus provides more than 500 GB/s of I/O read performance, which makes it the UK’s fastest HPC I/O platform, according to the university’s Research Computing Service, which operates the Cumulus cluster.[1]

In benchmark testing, the Cumulus system achieved an IO-500 score of 158.7, which ranked the system third on the November 2018 IO-500 list. For system users, these numbers equate to big improvements in I/O performance for data-intensive HPC and AI workloads — and faster time to insight.

Building the right foundation for new and emerging workloads

For organizations searching for the right IT foundation for AI workloads, Intel offers expert insights in its high-level Guide to Developing an AI Infrastructure Strategy. The options outlined in this guide range from starting from scratch with your current systems to outsourcing your entire solution. One of these options is to build a broad platform that is designed to support a wide range of AI workloads — which is the approach the University of Cambridge took with its Cumulus system.

The guide explains: “This approach is similar to the emerging ‘platform’ architecture we now see prevalent across IT — that is, an approach that provides a highly scalable infrastructure layer that can be managed as a single pool, using virtualization and software-defined orchestration across server processing, storage and networking.”[2]

The guide presents this broad-platform infrastructure strategy in terms of a three-tier stack, with hardware, software and process layers that work together to enable AI workloads. A few highlights from this architecture:

  • At the hardware layer, communication between devices and systems is based around an ultra-high speed backbone, such as the Intel® Omni-Path.
  • The software layer includes operating system and virtualization layers, which support a library of AI-specific modules. These modules enable algorithmic processing and analytics, data management and I/O, as well as the delivery of data sources and the visualization of analysis results.
  • The process layer runs the business logic of the AI application, using library modules to deliver capabilities like image recognition.

Intel notes that this architecture results in a platform-based approach that offers a single point of configuration and a unique deployment target.

Key takeaways

The rise of artificial intelligence creates unprecedented opportunities for today’s enterprises. To fully capitalize on these opportunities, your organization needs a scalable HPC infrastructure that is specifically designed to incorporate the latest processor and fabric technologies, accommodate massive amounts of data, and leverage technologies to accelerate the data storage I/O and AI workloads.

To learn more

For a closer and more technical look at the University of Cambridge’s use of the Data Accelerator, visit the Research Computing Services’ Data Accelerator site. And for a broader look at the university’s Cumulus cluster, read the Dell EMC case study “UK Science Cloud.”

 

The Convergence of HPC, Analytics and AI

High-performance computing, data analytics and artificial intelligence no longer live in separate domains. These complementary technologies are rapidly converging as organizations work to gain greater value from the data they capture and store.


[1] Dell EMC case study, “UK Science Cloud,” November 2018.

 

[2] Intel, “Select the Best Infrastructure Strategy to Support Your AI Solution,” March 2018.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This