Architecting for AI Workloads

March 4, 2019

Artificial intelligence has come of age. To capitalize fully on the opportunities, organizations need to design high-performance computing architectures for AI workloads.

After years of talking about the promise of artificial intelligence, enterprises around the world are now diving headfirst into AI-driven processes and business models. From financial services to manufacturing, from healthcare to retail, enterprises are now “all in” with AI and its supporting computing models — notably machine and deep learning. The same holds true for universities and government agencies. They are using AI for countless pursuits, from driving groundbreaking scientific discoveries to protecting our national security.

This widespread embrace of all things AI is fueled by the rise of more powerful processors and accelerators, advanced tools and techniques for data analytics, more precise algorithms and — most of all — an explosion of data, driven to a large degree by the Internet of Things. When you put it all together, you’ve got what it takes to put AI to work in countless applications.

Architecting for AI workloads

To capitalize fully on the opportunities in today’s data-driven world, IT organizations need to design high-performance computing architectures to accommodate demanding AI workloads. The HPC and AI community has started optimizing AI frameworks and developer tools to address performance needs, allowing for much larger batch sizes to be processed on industry standard CPUs. Within the last year, Intel® has seen up to 241x training performance gains through optimized frameworks with Intel® Math Kernel Library (MKL) on Intel Xeon® Scalable Processors over Haswell processors. This can take your time to train from hours to minutes, while these optimizations provide the eco-system greater access to AI capabilities.

This shift to AI-focused infrastructure is happening today as organizations roll out systems that bring together the capabilities of HPC, data analytics and AI. This is the case with the University of Cambridge’s latest supercomputer, called Cumulus. This groundbreaking system was designed to serve as a single HPC cluster that supports researchers’ needs for data analytics, machine learning and large-scale data processing. The goal is to solve extremely difficult big data, simulation and AI challenges.

To meet this goal, the Cumulus architecture was designed to address the broad range of system challenges, including those at the compute, network, storage and software layers. A key objective was to make the infrastructure perform well for diverse, data-intensive research workloads.

The Cumulus system provides more than 2 petaflops of performance, powered by Dell EMC PowerEdge™ servers and Intel Xeon Scalable processors, all connected via the Intel Omni-Path Architecture (OPA). The system incorporates OpenStack® software to control pools of compute, storage and networking resources and make them readily accessible to users via a cloud interface.

Solving for I/O bottlenecks

This architectural foundation alone doesn’t necessarily solve today’s persistent I/O challenges in HPC clusters. Here’s the problem: While data-processing power has raced forward in recent years, storage I/O limitations have created bottlenecks that slow time to insight, particularly for researchers running data-centric workloads that interact continuously with data storage systems.

The Cumulus system removes these bottlenecks with a unique solution called the Data Accelerator (aka DAC), which is designed into the network topology. DAC incorporates technologies from Dell EMC, Intel  and Cambridge University. In this architecture, the DAC nodes work in conjunction with the Distributed Name Space (DNE) feature in the Lustre file system and Intel® Omni-Path switches to accelerate system I/O.

The results of this accelerated architecture have been rather amazing. With DAC under the hood, Cumulus provides more than 500 GB/s of I/O read performance, which makes it the UK’s fastest HPC I/O platform, according to the university’s Research Computing Service, which operates the Cumulus cluster.[1]

In benchmark testing, the Cumulus system achieved an IO-500 score of 158.7, which ranked the system third on the November 2018 IO-500 list. For system users, these numbers equate to big improvements in I/O performance for data-intensive HPC and AI workloads — and faster time to insight.

Building the right foundation for new and emerging workloads

For organizations searching for the right IT foundation for AI workloads, Intel offers expert insights in its high-level Guide to Developing an AI Infrastructure Strategy. The options outlined in this guide range from starting from scratch with your current systems to outsourcing your entire solution. One of these options is to build a broad platform that is designed to support a wide range of AI workloads — which is the approach the University of Cambridge took with its Cumulus system.

The guide explains: “This approach is similar to the emerging ‘platform’ architecture we now see prevalent across IT — that is, an approach that provides a highly scalable infrastructure layer that can be managed as a single pool, using virtualization and software-defined orchestration across server processing, storage and networking.”[2]

The guide presents this broad-platform infrastructure strategy in terms of a three-tier stack, with hardware, software and process layers that work together to enable AI workloads. A few highlights from this architecture:

  • At the hardware layer, communication between devices and systems is based around an ultra-high speed backbone, such as the Intel® Omni-Path.
  • The software layer includes operating system and virtualization layers, which support a library of AI-specific modules. These modules enable algorithmic processing and analytics, data management and I/O, as well as the delivery of data sources and the visualization of analysis results.
  • The process layer runs the business logic of the AI application, using library modules to deliver capabilities like image recognition.

Intel notes that this architecture results in a platform-based approach that offers a single point of configuration and a unique deployment target.

Key takeaways

The rise of artificial intelligence creates unprecedented opportunities for today’s enterprises. To fully capitalize on these opportunities, your organization needs a scalable HPC infrastructure that is specifically designed to incorporate the latest processor and fabric technologies, accommodate massive amounts of data, and leverage technologies to accelerate the data storage I/O and AI workloads.

To learn more

For a closer and more technical look at the University of Cambridge’s use of the Data Accelerator, visit the Research Computing Services’ Data Accelerator site. And for a broader look at the university’s Cumulus cluster, read the Dell EMC case study “UK Science Cloud.”


The Convergence of HPC, Analytics and AI

High-performance computing, data analytics and artificial intelligence no longer live in separate domains. These complementary technologies are rapidly converging as organizations work to gain greater value from the data they capture and store.

[1] Dell EMC case study, “UK Science Cloud,” November 2018.


[2] Intel, “Select the Best Infrastructure Strategy to Support Your AI Solution,” March 2018.


Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputing Helps Explain the Milky Way’s Shape

September 30, 2022

If you look at the Milky Way from “above,” it almost looks like a cat’s eye: a circle of spiral arms with an oval “iris” in the middle. That iris — a starry bar that connects the spiral arms — has two stran Read more…

Top Supercomputers to Shake Up Earthquake Modeling

September 29, 2022

Two DOE-funded projects — and a bunch of top supercomputers — are converging to improve our understanding of earthquakes and enable the construction of more earthquake-resilient buildings and infrastructure. The firs Read more…

How Intel Plans to Rebuild Its Manufacturing Supply Chain

September 29, 2022

Intel's engineering roots saw a revival at this week's Innovation, with attendees recalling the show’s resemblance to Intel Developer Forum, the company's annual developer gala last held in 2016. The chipmaker cut t Read more…

Intel Labs Launches Neuromorphic ‘Kapoho Point’ Board

September 28, 2022

Over the past five years, Intel has been iterating on its neuromorphic chips and systems, aiming to create devices (and software for those devices) that closely mimic the behavior of the human brain through the use of co Read more…

DOE Announces $42M ‘COOLERCHIPS’ Datacenter Cooling Program

September 28, 2022

With massive machines like Frontier guzzling tens of megawatts of power to operate, datacenters’ energy use is of increasing concern for supercomputer operations – and particularly for the U.S. Department of Energy ( Read more…

AWS Solution Channel

Shutterstock 1818499862

Rearchitecting AWS Batch managed services to leverage AWS Fargate

AWS service teams continuously improve the underlying infrastructure and operations of managed services, and AWS Batch is no exception. The AWS Batch team recently moved most of their job scheduler fleet to a serverless infrastructure model leveraging AWS Fargate. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1166887495

Improving Insurance Fraud Detection using AI Running on Cloud-based GPU-Accelerated Systems

Insurance is a highly regulated industry that is evolving as the industry faces changing customer expectations, massive amounts of data, and increased regulations. A major issue facing the industry is tracking insurance fraud. Read more…

Do You Believe in Science? Take the HPC Covid Safety Pledge

September 28, 2022

ISC 2022 was back in person, and the celebration was on. Frontier had been named the first exascale supercomputer on the Top500 list, and workshops, poster sessions, paper presentations, receptions, and booth meetings we Read more…

How Intel Plans to Rebuild Its Manufacturing Supply Chain

September 29, 2022

Intel's engineering roots saw a revival at this week's Innovation, with attendees recalling the show’s resemblance to Intel Developer Forum, the company's ann Read more…

Intel Labs Launches Neuromorphic ‘Kapoho Point’ Board

September 28, 2022

Over the past five years, Intel has been iterating on its neuromorphic chips and systems, aiming to create devices (and software for those devices) that closely Read more…

HPE to Build 100+ Petaflops Shaheen III Supercomputer

September 27, 2022

The King Abdullah University of Science and Technology (KAUST) in Saudi Arabia has announced that HPE has won the bid to build the Shaheen III supercomputer. Sh Read more…

Intel’s New Programmable Chips Next Year to Replace Aging Products

September 27, 2022

Intel shared its latest roadmap of programmable chips, and doesn't want to dig itself into a hole by following AMD's strategy in the area.  "We're thankfully not matching their strategy," said Shannon Poulin, corporate vice president for the datacenter and AI group at Intel, in response to a question posed by HPCwire during a press briefing. The updated roadmap pieces together Intel's strategy for FPGAs... Read more…

Intel Ships Sapphire Rapids – to Its Cloud

September 27, 2022

Intel has had trouble getting its chips in the hands of customers on time, but is providing the next best thing – to try out those chips in the cloud. Delayed chips such as Sapphire Rapids server processors and Habana Gaudi 2 AI chip will be available on a platform called the Intel Developer Cloud, which was announced at the Intel Innovation event being held in San Jose, California. Read more…

More Details on ‘Half-Exaflop’ Horizon System, LCCF Emerge

September 26, 2022

Since 2017, plans for the Leadership-Class Computing Facility (LCCF) have been underway. Slated for full operation somewhere around 2026, the LCCF’s scope ext Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

Leading Solution Providers


AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow