IBM Pitches Quantum Volume as Benchmarking Tool for Gate-based Quantum Computers

By John Russell

March 6, 2019

IBM this week announced it had achieved its highest Quantum Volume number to date at the American Physical Society (APS) March meeting being held in Boston. What’s Quantum Volume, you ask? Broadly, it’s a ‘holistic measure’ introduced by IBM in a paper last November that’s intended to characterize gate-based quantum computers, regardless of their underlying technology (semiconductor, ion trap, etc.), with a single number. IBM is urging wide adoption of QV by the quantum computing community.

The idea is interesting. The highest QV score so far is 16 which was attained by IBM’s fourth generation 20-qubit IBM Q System One; that’s double the QV of IBM’s 20-qubit IBM Q Network devices. You can see qubit count isn’t the determinant (but it is a factor). Many system-wide facets – gate error rates, decoherence times, qubit connectivity, operating software efficiency, and more – are effectively baked into the measure. In the paper, IBM likens QV to LINPACK for its ability to compare diverse systems.

IBM has laid out a roadmap in which it believes it can roughly double QVs every year. This rate of progress, argues IBM, will produce quantum advantage – which IBM defines as “a quantum computation is either hundreds or thousands of times faster than a classical computation, or needs a smaller fraction of the memory required by a classical computer, or makes something possible that simply isn’t possible now with a classical computer” – in the 2020s.

Addison Snell, CEO, Intersect360 Research noted, “Quantum volume is an interesting metric for tracking progress toward the ability to leverage quantum computing in ways that would be impractical for conventional supercomputers. With the different approaches to quantum computing, it is difficult to compare this achievement across the industry, but it is nevertheless a compelling statistic.”

There’s a lot to unpack here and it’s best done by reading the IBM paper, which isn’t overly long. Bob Sutor, VP, IBM Q Strategy and Ecosystem, and Sarah Sheldon, research staff at IBM T.J. Watson Research Center, briefed HPCwire on QV’s components, use, and relevance to the pursuit of quantum advantage. Before jumping into how Quantum Value is determined, Sutor’s comments on timing and what the magic QV number might be to achieve quantum advantage are interesting.

“We’re not going to go on record saying this or that particular QV number [will produce quantum advantage]. We have now educated hunches based on the different paths that people are taking, that people are taking for chemistry, for AI explorations, for some of the Monte Carlo simulations, and frankly the QV number may be different and probably will be different for each of those. We are certainly on record as saying in the 2020s and we hope in 3-to-5 years,” said Sutor.

The APS meeting served as a broad launchpad for QV with IBM making several presentations on various quantum topics while also seeking to stimulate conversation and urge adoption of QV within the gate-based quantum computing crowd. IBM issued a press release, a more technical blog with data points, and continued promoting the original paper (Validating quantum computers using randomized model circuits) which is freely downloadable. Rigetti has reportedly implemented QV. Noteworthy, QV is not meant for use with adiabatic annealing quantum systems such as D-Wave’s.

A central challenge in quantum computing is the variety of error and system influences that degrade system control and performance. Lacking practical and powerful enough error correction technology, the community has opted for labelling the modern class of quantum computers as noisy intermediate-scale quantum (NISQ) systems. Recognizing this is a situation likely to persist for some time, the IBM paper’s authors[I] do a nice job describing the problem and their approach to measuring performance. Excerpt:

“In these noisy intermediate-scale quantum (NISQ) systems, performance of isolated gates may not predict the behavior of the system. Methods such as randomized benchmarking, state and process tomography, and gateset tomography are valued for measuring the performance of operations on a few qubits, yet they fail to account for errors arising from interactions with spectator qubits. Given a system such as this, whose individual gate operations have been independently calibrated and verified, how do we measure the degree to which the system performs as a general purpose quantum computer? We address this question by introducing a single-number metric, the quantum volume, together with a concrete protocol for measuring it on near-term systems. Similar to how LINPACK is used for comparing diverse classical computers, this metric is not tailored to any particular system, requiring only the ability to implement a universal set of quantum gates.

“The quantum volume protocol we present is strongly linked to gate error rates, and is influenced by underlying qubit connectivity and gate parallelism. It can thus be improved by moving toward the limit in which large numbers of well-controlled, highly coherent, connected, and generically programmable qubits are manipulated within a state-of-the-art circuit rewriting toolchain. High-fidelity state preparation and readout are also necessary. In this work, we evaluate the quantum volume of current IBM Q devices, and corroborate the results with simulations of the same circuits under a depolarizing error model.”

In practice, explained Sheldon, “We generate model circuits which have a specific form where they are sequences of different layers of random entangling gates. The first step is entangling gates between different pairs of qubits on the device. Then we permute the pairing of qubits, into another layer of entangling gates. Each of these layers we call the depth. So if we have three layers, it’s depth3. What we are looking at are circuits we call square circuits with the same number of qubits as the depth in the circuit. Since we are still talking about small enough numbers of qubits that we can simulate these circuits [on classical systems].

“We run an ideal simulation of the circuit and from get a probability distribution of all the possible outcomes. At the end of applying the circuit, the system should be in some state and if we were to measure it we would get a bunch of bit streams, outcomes, with some probabilities. Then we can compare the probabilities from the ideal case to what we actually measured. Based on how close we are to the ideal situation, we say whether or not we were successful. There are details in the paper about how we actually define the success and how we compare the experimental circuits to the ideal circuits. The main point is by doing these model circuits we’re sort of representing a generic quantum algorithm – [we realize] a quantum algorithm doesn’t use random circuits but this is kind of a proxy for that,” she said.

Shown below are some data characterizing IBM systems – IBM Q System One, IBM Q Network systems “Tokyo” and “Poughkeepsie,” and the publicly-available IBM Q Experience system “Tenerife.” As noted in IBM’s blog the performance of a particular quantum computer can be characterized on two levels: metrics associated with the underlying qubits in the chip—what we call the “quantum device”—and overall full-system performance.

“IBM Q System One’s performance is reflected in some of the best/lowest error rates we have ever measured. The average two qubit gate error is less than two percent, and the best gate has less than one percent error rate. Our devices are close to being fundamentally limited by coherence times, which for IBM Q System One averages 73μs,” write Jay Gambetta (IBM Fellow) and Sheldon in the blog. “The mean two-qubit error rate is within a factor of two (x1.68) of the coherence limit, the theoretical limit set by the qubit T1 and T2 (74μs and 69μs on average for IBM Q System One). This indicates that the errors induced by our controls are quite small, and we are achieving close to the best possible qubit fidelities on this device.”

It will be interesting to see how the quantum computing community responds to the CV metric. Back in May when Hyperion Research launched its quantum practice, analyst Bob Sorensen said, “One of the things I’m hoping we can at least play a role in is the idea of thinking about quantum computing benchmarks. Right now, if you read the popular press, and I say ‘IBM’ and the first thing you think of is, yes they have a 50-qubit system. That doesn’t mean much to anybody other than it’s one more qubit than a 49-qubit system. What I am thinking about is asking these people how can we start to characterize across a number of different abstractions and implementations to gain a sense of how we can measure progress.”

IBM has high hopes for Quantum Volume.

Link to release: https://newsroom.ibm.com/2019-03-04-IBM-Achieves-Highest-Quantum-Volume-to-Date-Establishes-Roadmap-for-Reaching-Quantum-Advantage

Link to blog: https://www.ibm.com/blogs/research/2019/03/power-quantum-device/

Link to paper: https://arxiv.org/pdf/1811.12926.pdf

Feature image; IBM Q System One

[i]Validating quantum computers using randomized model circuits, Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta IBM T. J. Watson Research Center, https://arxiv.org/pdf/1811.12926.pdf

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

More Details on ‘Half-Exaflop’ Horizon System, LCCF Emerge

September 26, 2022

Since 2017, plans for the Leadership-Class Computing Facility (LCCF) have been underway. Slated for full operation somewhere around 2026, the LCCF’s scope extends far beyond that of the large supercomputer — Horizon Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Microsoft Closes Confidential Computing Loop with AMD’s Milan Chip

September 22, 2022

Microsoft shared details on how it uses an AMD technology to secure artificial intelligence as it builds out a secure AI infrastructure in its Azure cloud service. Microsoft has a strong relationship with Nvidia, but is also working with AMD's Epyc chips (including the new 3D VCache series), MI Instinct accelerators, and also... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as the first computer programmer. The company also announced tw Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing that Hopper-generation GPUs (which promise greater energy eff Read more…

AWS Solution Channel

Shutterstock 1194728515

Simulating 44-Qubit quantum circuits using AWS ParallelCluster

Dr. Fabio Baruffa, Sr. HPC & QC Solutions Architect
Dr. Pavel Lougovski, Pr. QC Research Scientist
Tyson Jones, Doctoral researcher, University of Oxford

Introduction

Currently, an enormous effort is underway to develop quantum computing hardware capable of scaling to hundreds, thousands, and even millions of physical (non-error-corrected) qubits. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1166887495

Improving Insurance Fraud Detection using AI Running on Cloud-based GPU-Accelerated Systems

Insurance is a highly regulated industry that is evolving as the industry faces changing customer expectations, massive amounts of data, and increased regulations. A major issue facing the industry is tracking insurance fraud. Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

More Details on ‘Half-Exaflop’ Horizon System, LCCF Emerge

September 26, 2022

Since 2017, plans for the Leadership-Class Computing Facility (LCCF) have been underway. Slated for full operation somewhere around 2026, the LCCF’s scope ext Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing t Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Survey Results: PsiQuantum, ORNL, and D-Wave Tackle Benchmarking, Networking, and More

September 19, 2022

The are many issues in quantum computing today – among the more pressing are benchmarking, networking and development of hybrid classical-quantum approaches. Read more…

HPC + AI Wall Street to Feature ‘Spooky’ Science for Financial Services

September 18, 2022

Albert Einstein famously described quantum mechanics as "spooky action at a distance" due to the non-intuitive nature of superposition and quantum entangled par Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Leading Solution Providers

Contributors

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire