IBM Pitches Quantum Volume as Benchmarking Tool for Gate-based Quantum Computers

By John Russell

March 6, 2019

IBM this week announced it had achieved its highest Quantum Volume number to date at the American Physical Society (APS) March meeting being held in Boston. What’s Quantum Volume, you ask? Broadly, it’s a ‘holistic measure’ introduced by IBM in a paper last November that’s intended to characterize gate-based quantum computers, regardless of their underlying technology (semiconductor, ion trap, etc.), with a single number. IBM is urging wide adoption of QV by the quantum computing community.

The idea is interesting. The highest QV score so far is 16 which was attained by IBM’s fourth generation 20-qubit IBM Q System One; that’s double the QV of IBM’s 20-qubit IBM Q Network devices. You can see qubit count isn’t the determinant (but it is a factor). Many system-wide facets – gate error rates, decoherence times, qubit connectivity, operating software efficiency, and more – are effectively baked into the measure. In the paper, IBM likens QV to LINPACK for its ability to compare diverse systems.

IBM has laid out a roadmap in which it believes it can roughly double QVs every year. This rate of progress, argues IBM, will produce quantum advantage – which IBM defines as “a quantum computation is either hundreds or thousands of times faster than a classical computation, or needs a smaller fraction of the memory required by a classical computer, or makes something possible that simply isn’t possible now with a classical computer” – in the 2020s.

Addison Snell, CEO, Intersect360 Research noted, “Quantum volume is an interesting metric for tracking progress toward the ability to leverage quantum computing in ways that would be impractical for conventional supercomputers. With the different approaches to quantum computing, it is difficult to compare this achievement across the industry, but it is nevertheless a compelling statistic.”

There’s a lot to unpack here and it’s best done by reading the IBM paper, which isn’t overly long. Bob Sutor, VP, IBM Q Strategy and Ecosystem, and Sarah Sheldon, research staff at IBM T.J. Watson Research Center, briefed HPCwire on QV’s components, use, and relevance to the pursuit of quantum advantage. Before jumping into how Quantum Value is determined, Sutor’s comments on timing and what the magic QV number might be to achieve quantum advantage are interesting.

“We’re not going to go on record saying this or that particular QV number [will produce quantum advantage]. We have now educated hunches based on the different paths that people are taking, that people are taking for chemistry, for AI explorations, for some of the Monte Carlo simulations, and frankly the QV number may be different and probably will be different for each of those. We are certainly on record as saying in the 2020s and we hope in 3-to-5 years,” said Sutor.

The APS meeting served as a broad launchpad for QV with IBM making several presentations on various quantum topics while also seeking to stimulate conversation and urge adoption of QV within the gate-based quantum computing crowd. IBM issued a press release, a more technical blog with data points, and continued promoting the original paper (Validating quantum computers using randomized model circuits) which is freely downloadable. Rigetti has reportedly implemented QV. Noteworthy, QV is not meant for use with adiabatic annealing quantum systems such as D-Wave’s.

A central challenge in quantum computing is the variety of error and system influences that degrade system control and performance. Lacking practical and powerful enough error correction technology, the community has opted for labelling the modern class of quantum computers as noisy intermediate-scale quantum (NISQ) systems. Recognizing this is a situation likely to persist for some time, the IBM paper’s authors[I] do a nice job describing the problem and their approach to measuring performance. Excerpt:

“In these noisy intermediate-scale quantum (NISQ) systems, performance of isolated gates may not predict the behavior of the system. Methods such as randomized benchmarking, state and process tomography, and gateset tomography are valued for measuring the performance of operations on a few qubits, yet they fail to account for errors arising from interactions with spectator qubits. Given a system such as this, whose individual gate operations have been independently calibrated and verified, how do we measure the degree to which the system performs as a general purpose quantum computer? We address this question by introducing a single-number metric, the quantum volume, together with a concrete protocol for measuring it on near-term systems. Similar to how LINPACK is used for comparing diverse classical computers, this metric is not tailored to any particular system, requiring only the ability to implement a universal set of quantum gates.

“The quantum volume protocol we present is strongly linked to gate error rates, and is influenced by underlying qubit connectivity and gate parallelism. It can thus be improved by moving toward the limit in which large numbers of well-controlled, highly coherent, connected, and generically programmable qubits are manipulated within a state-of-the-art circuit rewriting toolchain. High-fidelity state preparation and readout are also necessary. In this work, we evaluate the quantum volume of current IBM Q devices, and corroborate the results with simulations of the same circuits under a depolarizing error model.”

In practice, explained Sheldon, “We generate model circuits which have a specific form where they are sequences of different layers of random entangling gates. The first step is entangling gates between different pairs of qubits on the device. Then we permute the pairing of qubits, into another layer of entangling gates. Each of these layers we call the depth. So if we have three layers, it’s depth3. What we are looking at are circuits we call square circuits with the same number of qubits as the depth in the circuit. Since we are still talking about small enough numbers of qubits that we can simulate these circuits [on classical systems].

“We run an ideal simulation of the circuit and from get a probability distribution of all the possible outcomes. At the end of applying the circuit, the system should be in some state and if we were to measure it we would get a bunch of bit streams, outcomes, with some probabilities. Then we can compare the probabilities from the ideal case to what we actually measured. Based on how close we are to the ideal situation, we say whether or not we were successful. There are details in the paper about how we actually define the success and how we compare the experimental circuits to the ideal circuits. The main point is by doing these model circuits we’re sort of representing a generic quantum algorithm – [we realize] a quantum algorithm doesn’t use random circuits but this is kind of a proxy for that,” she said.

Shown below are some data characterizing IBM systems – IBM Q System One, IBM Q Network systems “Tokyo” and “Poughkeepsie,” and the publicly-available IBM Q Experience system “Tenerife.” As noted in IBM’s blog the performance of a particular quantum computer can be characterized on two levels: metrics associated with the underlying qubits in the chip—what we call the “quantum device”—and overall full-system performance.

“IBM Q System One’s performance is reflected in some of the best/lowest error rates we have ever measured. The average two qubit gate error is less than two percent, and the best gate has less than one percent error rate. Our devices are close to being fundamentally limited by coherence times, which for IBM Q System One averages 73μs,” write Jay Gambetta (IBM Fellow) and Sheldon in the blog. “The mean two-qubit error rate is within a factor of two (x1.68) of the coherence limit, the theoretical limit set by the qubit T1 and T2 (74μs and 69μs on average for IBM Q System One). This indicates that the errors induced by our controls are quite small, and we are achieving close to the best possible qubit fidelities on this device.”

It will be interesting to see how the quantum computing community responds to the CV metric. Back in May when Hyperion Research launched its quantum practice, analyst Bob Sorensen said, “One of the things I’m hoping we can at least play a role in is the idea of thinking about quantum computing benchmarks. Right now, if you read the popular press, and I say ‘IBM’ and the first thing you think of is, yes they have a 50-qubit system. That doesn’t mean much to anybody other than it’s one more qubit than a 49-qubit system. What I am thinking about is asking these people how can we start to characterize across a number of different abstractions and implementations to gain a sense of how we can measure progress.”

IBM has high hopes for Quantum Volume.

Link to release: https://newsroom.ibm.com/2019-03-04-IBM-Achieves-Highest-Quantum-Volume-to-Date-Establishes-Roadmap-for-Reaching-Quantum-Advantage

Link to blog: https://www.ibm.com/blogs/research/2019/03/power-quantum-device/

Link to paper: https://arxiv.org/pdf/1811.12926.pdf

Feature image; IBM Q System One

[i]Validating quantum computers using randomized model circuits, Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta IBM T. J. Watson Research Center, https://arxiv.org/pdf/1811.12926.pdf

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ll get there at last month’s MIT-IBM Watson AI Lab’s AI Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve the problem, NASA researchers are using the world’s fastes Read more…

By Staff report

Chaminade University’s Immersion Program Builds Capacity for Data Science in Hawaii, Pacific Region

October 10, 2019

Kuleana is a uniquely Hawaiian value and practice which embodies responsibility to self, community, and the ‘aina' (land). At Chaminade University, a federally designated Native Hawaiian serving university in Hawai‘i Read more…

By Faith Singer-Villalobos

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

HPC in the Cloud: Avoid These Common Pitfalls

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community.]

It seems that everyone is experimenting about cloud computing. Read more…

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

NSF Announces New AI Program; Plans $120M in Funding Next Year

October 8, 2019

As the saying goes, when you’re hot, you’re hot. Right now, AI is scalding. Today the National Science Foundation announced a new AI initiative – The National Artificial Intelligence Research Institutes program – with plans to invest about “$120 million in grants next year... Read more…

By Staff report

DOE Sets Sights on Accelerating AI (and other) Technology Transfer

October 3, 2019

For the past two days DOE leaders along with ~350 members from academia and industry gathered in Chicago to discuss AI development and the ways in which industr Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

ISC Keynote: Thomas Sterling’s Take on Whither HPC

June 20, 2019

Entertaining, insightful, and unafraid to launch the occasional verbal ICBM, HPC pioneer Thomas Sterling delivered his 16th annual closing keynote at ISC yesterday. He explored, among other things: exascale machinations; quantum’s bubbling money pot; Arm’s new HPC viability; Europe’s... Read more…

By John Russell

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This