Overcoming Network and Storage Bottlenecks in HPC & AI

March 11, 2019

As processors and data storage drives grow bigger and faster, they can easily overwhelm networks, creating the need for new networking and system I/O approaches.

It wasn’t that many years ago that 10GbE networks seemed like the be-all and end-all for high-performance computing. Who would ever need more bandwidth than that? Well, fast forward to the present. As many organizations have found, 10GbE, and even 25GbE and 40GbE, can’t deliver the throughput demanded by bandwidth-hungry HPC workloads, including high-performance data analytics, AI, machine learning and deep learning.

Here’s the problem. With data-intensive applications, the network can create bottlenecks that limit the performance gains made possible by Intel® Optane storage, multi-core CPUs and other technology advances. While drives and processors are getting bigger and faster, the speed at which data moves is limited by the bandwidth of the network, along with system I/O, and that puts a damper on what matters most — the responsiveness of the application.

When a fraud-prevention system or a real-time stock-trading application is making split-second decisions, there’s no time for system latency. Milliseconds matter. Network latency also matters to countless other HPC use cases, from training machine learning models to extracting life-saving insights from genomic data. Slower networks mean slower time to insight. And that’s a problem for today’s workloads that are running up against network limitations in HPC systems.

Breaking through bottlenecks

There are many ways to break through bottlenecks and some lessons learned from office systems. The IT team at the University of Pisa is leveraging a network architecture to improve the performance of its Storage Spaces Direct environment, which incorporates lightning-fast NVMe drives.

“The network has become again the bottleneck of a system, mostly because of NVMe drives,” Antonio Cisternino, the university’s chief information officer, notes in a Dell EMC case study. “Four NVMe drives, aggregated, are capable of generating around 11 gigabits per second of bandwidth, which tops a 100-gigabit connection. They may saturate and block I/O with just four drives.”[1]

To get around this bottleneck, the IT pros at the University of Pisa used Dell EMC S5048-ON switches to build what amounts to a bigger highway in their Storage Spaces Direct environment. A spine-leaf network design gives every server access to two lanes of 25Gb RoCE — RDMA over Converged Ethernet — to move data in and out of the NVMe drives. This results in an aggregate bandwidth of 50Gb/sec, which helps ensure that the network won’t be much of a bottleneck in the system.

A high-performance file system

In HPC systems, data transfer rates are only part of the latency story. There is also the closely aligned issue of file system I/O performance, which can impact the speed at which data is transferred across the network. As a researcher from Lawrence Berkeley National Laboratory notes, “if data is being transferred to a busy file system the transfer rate would be slower than a file system at regular activity levels.”[2]

In Australia, the Commonwealth Scientific and Industrial Research Organisation (CSIRO) is addressing this issue via a storage upgrade to remove file-system bottlenecks across its HPC clusters. It has contracted with Dell EMC for a new, higher-performance file system to be shared across all of its in-house supercomputers, according to Australia’s iTnews.[3]

The new file system will be based on Dell EMC PowerEdge™ R740 servers with Intel® Xeon® Scalable processors and will include 2 PB of NVMe-based storage from Intel, iTnews reports. This upgrade will help CSIRO avoid I/O bottlenecks and harness the full potential of its HPC systems, including its new Dell EMC-based Bracewell supercomputer.

“As our users became accustomed to the new capability of the Bracewell cluster, we anticipated that the IO performance of the filesystem would become a bottleneck restricting the performance of some of our users’ codes,” a CSIRO spokesperson told iTnews. “This upgrade will remove that bottleneck.”

Key takeaways

With today’s data-intensive applications, HPC administrators must look closely at network and system I/O architectures. Data is not slowing down, and HPC systems need to keep all those bits and bytes moving in step with ever-faster processors and ever-faster storage media.

This is the way it is in a world where HPC, data analytics and AI are rapidly converging. And this convergence calls for creative approaches to avoid bottlenecks caused by network and system I/O constraints.

To learn more

For a closer look at the University of Pisa’s Storage Spaces Direct environment, read the Dell EMC case study “Storage Success.” And to explore the technologies for HPC and AI in a converged world, visit dellemc.com/hpc and dellemc.com/ai.

 

The Convergence of HPC, Analytics and AI

High-performance computing, data analytics and artificial intelligence no longer live in separate domains. These complementary technologies are rapidly converging as organizations work to gain greater value from the data they capture and store.


[1] Dell EMC case study, “Storage Success,” June 2018.

[2] Karen Tu, Lawrence Berkeley National Laboratory, “Identifying Network Data Transfer Bottlenecks in HPC Systems,” abstract, SC18 presentation.

[3] iTnews, “CSIRO removes HPC ‘bottleneck’ with storage upgrade,” July 6, 2018.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire