IBM, Intel Papers Report AI Breakthroughs for Quantum Science

By John Russell

March 13, 2019

Fascinatingly, two announcements today show how AI (machine and deep learning) can influence quantum computing in quite different ways. IBM (et. al) reported developing ‘AI’ algorithms that “demonstrate how noisy quantum computers can solve machine learning classification problems that classical computers cannot” thus paving the way to obtain quantum advantage. Intel (et. al) reported having “mathematically proven that artificial intelligence can help us understand currently unreachable quantum physics phenomena” which, among other things, could lead to better quantum computers.

The twin announcements closely track prestigious publications. The MIT, Oxford, and IBM-led paper, Supervised learning with quantum-enhanced feature spaces, was published in Nature today. The Intel-led paper, Quantum Entanglement in Deep Learning Architectures, was published in APS Physical Review Letters last month. Intel made its announcement in conjunction with Intel Mobileye co-founder/CEO Amnon Shashua’s keynote today at the National Academy of Sciences ‘Science of Deep Learning’ conference. Shashua is also a professor at Hebrew University and one of the paper’s authors.

IBM posted a blog by IBM researchers Kristan Temme and Jay Gambetta explaining the work.

“There are high hopes that quantum computing’s tremendous processing power will someday unleash exponential advances in artificial intelligence. AI systems thrive when the machine-learning algorithms used to train them are given massive amounts of data to ingest, classify and analyze. The more precisely that data can be classified according to specific characteristics, or features, the better the AI will perform. Quantum computers are expected to play a crucial role in machine learning, including the crucial aspect of accessing more computationally complex feature spaces – the fine-grain aspects of data that could lead to new insights,” write Temme and Gambetta.

“[In the paper] we describe developing and testing a quantum algorithm with the potential to enable machine learning on quantum computers in the near future. We’ve shown that as quantum computers become more powerful in the years to come, and their Quantum Volume increases, they will be able to perform feature mapping, a key component of machine learning, on highly complex data structures at a scale far beyond the reach of even the most powerful classical computers…Our methods were also able to classify data with the use of short-depth circuits, which opens a path to dealing with decoherence. Just as significantly, our feature-mapping worked as predicted: no classification errors with our engineered data, even as the IBM Q systems’ processors experienced decoherence.”

Given the nature of the material, the IBM blog and paper are best read directly.

Intel’s work attacked a different issue and the paper’s authors do a nice job framing the challenge in this excerpt:

“A prominent approach for classically simulating many-body wave functions makes use of their entanglement properties in order to construct tensor network (TN) architectures that aptly model them in the thermodynamic limit. Though this method is successful in modeling one-dimensional (1D) systems that obey area-law entanglement scaling with subsystem size through the matrix product state (MPS) TN, it still faces difficulties in modeling two-dimensional (2D) systems due to intractability.

“In the seemingly unrelated field of machine learning, deep neural network architectures have exhibited an unprecedented ability to tractably encompass the convoluted dependencies that characterize difficult learning tasks such as image classification or speech recognition. A consequent machine learning inspired approach for modeling wave functions makes use of fully connected neural networks and restricted Boltzmann machines (RBMs), which represent relatively veteran machine learning constructs.

“In this Letter, we formally establish that highly entangled many-body wave functions can be efficiently represented by deep learning architectures that are at the forefront of recent empirical successes. Specifically, we address two prominent architectures in the form of convolutional neural networks (CNNs), commonly used over spatial inputs (e.g., image pixels), and recurrent neural networks (RNNs), commonly used over temporal inputs (e.g., phonemes of speech).”

Once again, this is a topic best examined by reading the original paper. That said the implications are far reaching affecting many areas of research at the quantum level.

Link to IBM-led paper: https://www.nature.com/articles/s41586-019-0980-2

Link to IBM Blog: https://www.ibm.com/blogs/research/2019/03/machine-learning-quantum-advantage/

Link to Intel-led paper: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.065301

Link to Intel announcement: https://newsroom.intel.com/news/intel-executive-leads-artificial-intelligence-researchers-linking-ai-quantum-physics-insight/?cid=em-elq-44706&utm_source=elq&utm_medium=email&utm_campaign=44706&elq_cid=1192704

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire