It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

By Tiffany Trader

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, “Aurora,” capable of sustained performance of one exaflops, will be delivered by the end of 2021 to Argonne National Laboratory and become the United States’ first exascale supercomputer. The retooled CORAL contract is valued at more than $500 million; Intel is still the prime and Cray is still the sub-contractor (as per the original CORAL contract, which was rewritten but not put out for rebid).

Today’s announcement left unanswered questions about Aurora, in particular details on the “novel” technologies previously alluded to by Intel and the DOE that will be incorporated in Aurora21. But Intel did put a name – X– to the mystery that is its next-generation architecture, which while not available in the wild yet, undergirds the DOE’s plans to achieve sustained exascale in 2021.

In summary, here’s what Intel and the DOE offered up about the Aurora design:

Aurora — a Cray “Shasta” system — will be based on a future generation of Intel Xeon Scalable processor, Intel’s Xe compute architecture, a future generation of Intel Optane Datacenter Persistent Memory, and Intel’s One API software. Those technologies will be embodied in more than 200 Shasta cabinets, all connected by Cray’s Slingshot interconnect and the Shasta software stack.

“Aurora will use a combination of Intel software components and new Cray System software designed for Shasta to enable modularity and extensibility of the system over time,” said Cray. “By unifying the Shasta compute and Slingshot interconnect with a single management and software application development infrastructure, workloads on the Aurora system will run more optimally to deliver researchers more realized performance and accelerate their time to insight.”

Cray’s contract is valued at more than $100 million, one of the largest in Cray’s history. Aurora is the second major win for Shasta systems in the last six months. Cray’s contract with NERSC, for the Shasta system known as “Perlmutter” is worth $146 million.

During a pre-briefing held for media last Friday (March 15), Intel provided no technical details on the new Xe architecture — on whether it would incorporate the new discrete GPU that Intel slyly showed on a foil at SC18 in Denver, for example.

Slide presented by Raj Hazra at SC18

What Intel’s Rajeeb Hazra did say was that “Xe represents a tremendous amount of R&D and innovation to extend what is done in the franchise to address new workload needs, particularly the kinds of workloads we see coming in the convergence of HPC, AI and data analytics.”

The partners  — the DOE, Argonne Lab, Intel and Cray — are unified in emphasizing not just the significance of crossing the exascale horizon, but Aurora’s role in accelerating the convergence of high performance computing and traditional modeling and simulation with data analytics and AI.

“This system will be an excellent platform for both traditional high performance computing applications but also is being designed to be excellent for data analytics, particularly the kinds of streaming data problems we have in the DOE, where we have data coming off accelerators, detectors, telescopes and so forth,” said Rick Stevens, associate laboratory director for computing, environment and life sciences at Argonne, during Friday’s briefing.

Stevens also said Aurora will be “exclusively configured” to be an excellent platform for deep learning.

“This platform is designed to tackle the largest AI training and inference problems that we know about,” he stated. “There are over a hundred AI applications being developed by the various national laboratories. As part of the Exascale Computing Project, there’s a new effort around exascale machine learning, and that activity is feeding into the requirements for Aurora, particularly the software environment; the hardware will be very excellent for training and will achieve state of the art performance on training.”

In speaking generally about the requirements for Aurora, Hazra — Intel’s corporate vice president and general manager of enterprise and government group — mentioned the importance of: “new process technologies, designing efficient silicon, and most importantly…new ways to put together silicon with packaging innovations.”

It’s all part of the “six pillars of innovation” that Intel has been focusing on in recent customer and partner (and media) engagements.

Argonne’s Stevens believes the convergence of machine learning, deep learning and simulation will create a multiplier effect for the progress of scientific discovery. “We see many groups that are doing simulations – wanting to incorporate various machine learning or AI methods directly into those simulations or to control or manage large numbers of simulations with AI to do active learning approaches, so in general we think this will create another wave of acceleration across many areas of science, technology and health care,” he said.

Stevens is personally looking forward to how the increase in compute and new data analytics capabilities will boost Argonne’s efforts with the National Institutes of Health and Cancer, as well as with the Veteran’s Administration, which in collaboration with the DOE, is applying large-scale data analytics and machine learning to understanding the risk factors for suicide and strategies for improving outcomes in suicide. Better understanding cardiac risk and traumatic brain injuries are further application areas. Aurora will be available to the DOE complex, as well as the U.S. university system through programs like INCITE as well as being available to the American industry, Stevens reported.

Areas the Exascale Computing Project (ECP) has been investing in include material science, e.g., designing better battery materials, more efficient photovoltaics, and advanced materials for wind power or nuclear reactors. Other ECP projects are evaluating earthquake hazard risk; another is looking to apply simulation and AI to additive manufacturing. There are projects focused on improving wind turbine efficiency, and others advancing climate and weather forecasting.

National security and defense applications are of course critical to DOE leadership supercomputing. DOE Under Secretary for Science Paul Dabbar on Friday referenced the importance of HPC for managing stockpile stewardship. “A lot of our defense applications at the department are utilizing high performance computing since the test treaty was signed and this capability allows us to continue and accelerate our understanding of those needs,” he said.

In 2018, the DOE national lab complex commissioned the number one and number two supercomputers in the world — Summit and Sierra at Oak Ridge and Livermore Lab respectively — and it houses five of the world’s top ten supercomputers (as ranked by the Top500 and High Performance Linpack benchmark).

Commenting on the challenge of closing the delta between Summit (~150 petaflops) and Aurora (>1,000 petaflops) in three years, Stevens said: “Exascale R&D has been going on for over a decade and the innovation curves on which these exascale platforms are being based are moving extremely rapidly, so yes, this machine will arrive only about three years after the current number one machine has been on the floor, but during that time there will be some quickened advances in both architecture and software needed to achieve this performance goal.”

Funding for Aurora is included in Trump’s 2020 budget request that came out last Monday (March 11): “$500 million for the DOE Office of Science as well as $309 million for the National Nuclear Security Administration … [will] enable the deployment of an Exascale computer system in calendar year 2021.”

Comments shared by partners: 

“Achieving exascale is imperative, not only to better the scientific community, but also to better the lives of everyday Americans,” said U.S. Secretary of Energy Rick Perry. “Aurora and the next generation of exascale supercomputers will apply HPC and AI technologies to areas such as cancer research, climate modeling, and veterans’ health treatments. The innovative advancements that will be made with exascale will have an incredibly significant impact on our society.”

“Today is an important day not only for the team of technologists and scientists who have come together to build our first exascale computer – but also for all of us who are committed to American innovation and manufacturing,” said Bob Swan, Intel CEO. “The convergence of AI and high-performance computing is an enormous opportunity to address some of the world’s biggest challenges and an important catalyst for economic opportunity.”

“There is tremendous scientific benefit to our nation that comes from collaborations like this one with the Department of Energy, Argonne National Laboratory, and industry partners Intel and Cray,” said Argonne National Laboratory Director, Paul Kearns. “Argonne’s Aurora system is built for next-generation Artificial Intelligence and will accelerate scientific discovery by combining high-performance computing and artificial intelligence to address real world problems, such as improving extreme weather forecasting, accelerating medical treatments, mapping the human brain, developing new materials, and further understanding the universe – and that is just the beginning.”

“Cray is proud to be partnering with Intel and Argonne to accelerate the pace of discovery and innovation across a broad range of disciplines,” said Peter Ungaro, president and CEO of Cray. “We are excited that Shasta will be the foundation for the upcoming exascale-era characterized by extreme performance capability, new data-centric workloads, and heterogeneous computing.”

“It seems fitting that America’s first exascale supercomputer, the country’s initial entrant in the global exascale race, is a Cray, a name synonymous with the word supercomputer,” said Steve Conway, Hyperion Research senior vice president of research. “This implementation of Cray’s Shasta architecture was developed in collaboration with Intel and closely matches the wish list that leading HPC users have for the exascale era, but didn’t expect to see so soon.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Volcanoes, Mobile Games, Proteins & More

July 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and increase the vehicle’s speed and efficiency. These fluid dyn Read more…

By Oliver Peckham

U.S. CTO Michael Kratsios Adds DoD Research & Engineering Title

July 13, 2020

Michael Kratsios, the U.S. Chief Technology Officer, has been appointed acting Undersecretary of Defense for research and engineering. He replaces Mike Griffin, who along with his deputy Lis Porter, stepped down last wee Read more…

By John Russell

Supercomputer Research Reveals Star Cluster Born Outside Our Galaxy

July 11, 2020

The Milky Way is our galactic home, containing our solar system and continuing into a giant band of densely packed stars that stretches across clear night skies around the world – but, it turns out, not all of those st Read more…

By Oliver Peckham

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprised of Intel Xeon processors and Nvidia A100 GPUs, and featuri Read more…

By Tiffany Trader

AWS Solution Channel

INEOS TEAM UK Accelerates Boat Design for America’s Cup Using HPC on AWS

The America’s Cup Dream

The 36th America’s Cup race will be decided in Auckland, New Zealand in 2021. Like all the teams, INEOS TEAM UK will compete in a boat whose design will have followed guidelines set by race organizers to ensure the crew’s sailing skills are fully tested. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Xilinx Announces First Adaptive Computing Challenge

July 9, 2020

A new contest is challenging the computing world. Xilinx has announced the first Xilinx Adaptive Computing Challenge, a competition that will task developers and startups with finding creative workload acceleration solutions. Xilinx is running the Adaptive Computing Challenge in partnership with, a developing community... Read more…

By Staff report

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers


Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This