At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

By Doug Black

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and – with its pending purchase of Mellanox – acquired technologies. On opening day of Nvidia’s 10th annual GPU Technology Conference in San Jose, company founder and CEO Jensen Huang offered up a densely packed two-and-half hour keynote in which he surveyed the landscape of his company’s datacenter, data science, AI and robotics portfolio.

Echoing the often-heard statement that “AI is the new HPC workload,” Huang began his address by highlighting Nvidia GPU’s role within the world’s two most powerful supercomputers, IBM’s Summit and Sierra systems, along with many other of the 500 most powerful HPC systems – against the backdrop of the acquisition of Mellanox, maker of high-speed network gear also used in most of the Top500 supercomputers.

“Accelerated computing is not just about the chips,” Huang said. “Accelerated computing is a collaboration, a codesign, a continuous optimization between the architecture of the chip, the systems, the algorithm and the application.”

Backing up this sentiment, Nvidia and Huang announced that major server vendors (Cisco, Dell EMC, Fujitsu, HPE, Inspur, Lenovo and Sugon) now offer Nvidia T4 GPU servers for data analytics, machine learning and deep learning.

Integrated into the servers is Nvidia’s new data science acceleration software, CUDA-X AI, also announced during Huang’s keynote, which the company said “unlocks the flexibility of our Nvidia Tensor Core GPUs (including Volta and the Titan V series) to uniquely address this end-to-end AI pipeline.” Adopted by PayPal, SAS, Walmart and Microsoft, the CUDA-X AI acceleration libraries can speed up machine learning and data science workloads by up to 50x, according to Nvidia.

Nvidia said the T4 servers are designed to fit into existing datacenter infrastructures while accelerating AI training and inference, machine learning, data analytics and virtual desktops.

Of the T4 GPU processor used in the new servers, Huang said, “It literally draws only 70 watts, it’s the size of a candy bar, it fits into every single of the high volume most popular dataccenter servers in the world, it can fit in a blade, it fits in a hyperscale server, it fits in an enterprise datacenter server. Four T4s gives you about 260 teraflops of FP16 (65 teraflops per processor), so it’s a supercomputer, essentially, and it comes with Mellanox or Broadcom Ethernet NICs.”

In addition, Nvidia said the systems are NGC (Nvidia GPU Cloud)-Ready validated, which means they have “demonstrated ability to excel in a full range of accelerated workloads.” NGC offers a repository of GPU-accelerated software, pre-trained AI models, model training for data analytics, machine learning, deep learning and high performance computing accelerated by CUDA-X AI, according to the company.

“As more enterprises begin to institute artificial intelligence into their business operations, the need for dense servers equipped with versatile GPU accelerators continues to grow,” said Madhu Matta, VP/GM of HPC/AI, Lenovo Data Center Group. He said the Lenovo ThinkSystem SR670 supports up to eight Nvidia T4 GPUs in 2U.

Nvidia also announced the RTX blade servers, designed for rendering, remote workstation, and cloud gaming. The company said servers, which include optimized software stacks, “deliver cinematic-quality graphics enhanced by ray tracing for far less than just the cost of electricity for a CPU-based rendering cluster with the same performance.”

The RTX server is comprised of 40 GPUs in an 8U space and can be shared by multiple users with Nvidia’s GRID vGaming or container software. Nvidia RTX pods encase up to 32 servers within 10 racks for total of 1,280 GPUs. Connected with Mellanox InfiniBand, RTX pods support up to 10,000 concurrent gamers. Dell EMC, HPE, Lenovo, ASUS and Supermicro have unveiled RTX servers.

“We are enabling content producers to create more visually-rich graphics and renderings faster than ever before,” said Bill Mannel, VP/GM of HPC and AI Group, Hybrid IT, at HPE. “With the HPE Apollo 6500 Gen10, HPE ProLiant DL380 Gen10 and HPE ProLiant ML350 Gen10, we will offer the RTX server to provide designers with GPU-accelerated power and performance for the most efficient end-to-end rendering solutions, from interactive sessions on the desktop to final batch rendering in the datacenter.”

Nvidia also launched, in concert with HPE, Dell EMC and Lenovo, a line of high-performance workstations it says are purpose-built to help data scientists prepare, process and analyze the massive amounts of data used in finance, insurance, retail, professional services and other industries.

The workstations are based on a reference architecture made up of dual Nvidia Quadro RTX GPUs and Nvidia CUDA-X AI data science software is a collection of libraries, such as RAPIDS, TensorFlow, PyTorch and Caffe, designed to enable higher performance of applications using Nvidia GPUs.

The workstations are powered by the Nvidia Turing GPU architecture and designed for enterprise deployment. Dual Quadro RTX 8000 and 6000 GPUs deliver up to 260 teraflops of compute performance and 96GB of memory using Nvidia NVLink interconnect technology, according to the company.

Finally, Nvidia announced Jetson Nano, a $99, palm-sized CUDA-X AI computer (akin to a Raspberry Pi single-board computer) with 472 gigaflops of performance used to create intelligent systems, including robots, drones, digital assistants and automated appliances.

Designed for makers, developers, inventors and students, Nvidia said Jetson Nano supports high-resolution sensors, can process many sensors in parallel and can run multiple modern neural networks on each sensor stream. It joins the Jetson product lineup, which includes Jetson AGX Xavier for autonomous machines and Jetson TX2 for AI at the edge.

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn’t a shocking surprise as many observers speculated Intel w Read more…

By John Russell

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This