ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

By Laurie Varma

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach their power and performance limits. Over time, computer architectures have become much more complex.

A group of computer scientists from Department of Energy national laboratories, including Oak Ridge, Lawrence Berkeley, Sandia, Los Alamos, Argonne, and Brookhaven, convened in early 2018 to consider  how the field can best meet the challenges posed by the phenomenon they label “extreme heterogeneity.” ORNL was represented by the Computing and Computational Sciences Directorate’s Jeffrey Vetter, Catherine Schuman, and Travis Humble.

The group’s report, compiled following the 2018 DOE Office of Advanced Scientific Computing Research Basic Research Needs Workshop on Extreme Heterogeneity, was recently published.

“For nearly two decades, scientists relied on relatively simple HPC architectures with one type of processor, one type of main memory, and one type of interconnect,” Vetter, who chaired the workshop, said.

“In 2010, we saw the emergence of HPC architectures with multiple types of processors and memory, and now we’re seeing architectures that combine CPUs, GPUs, accelerators, and perhaps even a reconfigurable core into one multichip package,” Vetter said. “This diversity of processors, memory systems, and interconnection networks leads to extreme heterogeneity.”

In short, all the developments that made ever-faster computations possible have upended the field after decades of relative stability. “Future programmers are faced with a computing melting pot,” Humble said. “The diversity of computing choices, many of them unprecedented and novel, yields exciting performance opportunities but also introduces new barriers to adoption.”

The workshop examined the consequences of current trends toward complexity—increasing numbers of parallel operations, highly differentiated hardware accelerators to speed up data processing, programming methods that do not accurately reflect operating costs, the need for intelligent runtime systems, and wide differences in performance and workflows—and recommended the best responses.

Over the past four decades, performance and energy efficiency in scientific computing technologies improved rapidly to produce lightning-speed computations but are expected to taper off as systems develop characteristics of extreme heterogeneity. Original figure courtesy of Kunle Olukotun, Lance Hammond, Herb Sutter, and Burton Smith. Figure extrapolations extended in 2016 by J. Shalf.

Vetter warned that if challenges posed by extreme heterogeneity go unanswered, computational science could come to a standstill while scientists grapple with architectural diversity and this new pace of change. “They won’t have time to add new features to their applications for more capable science,” he said.

Workshop attendees developed five priority research directions aimed at meeting the challenges of increasing complexity in computing architectures. First, programmer productivity will be improved when the field creates new flexible, expressive programming abstractions that allow for fluid migration across architectures and straightforward development of software through improved composability and construction.

Second, where there are heterogeneous resources in the same node, using automated methods for scheduling work on architectures to optimize performance, energy, and availability will be vital. “Most developers won’t have expertise in all available resources, so ‘smart’ compilers and software development tools will help,” Schuman said.

Incorporating machine learning or other predictive techniques, Vetter added, will relieve programmers from having to manually specify which resources to use for various tasks.

Third, modeling and predicting performance of systems will become more important as computer scientists evaluate a dizzying number of hardware and software options. “The ultimate goal is embedding performance data in an application so that it can make decisions about how best to execute and adapt dynamically,” Vetter said.

Today’s heterogeneous architectures pose challenges not only for computing processes but also for enabling reproducible science, the group’s fourth priority research direction. What might have been attributed to a difference in methods or a flaw in hypotheses before the advent of extreme heterogeneity could reflect subtle differences in system components and their nondeterministic interactions. Advances in reproducibility will allow scientists to quickly identify the root cause of errors and evaluate potential solutions.

Travis Humble, Catherine Schuman, and Jeffrey Vetter (from left) represented Oak Ridge National Laboratory at the 2018 DOE ASCR Basic Research Needs Workshop on Extreme Heterogeneity. The group, which included participants from six DOE national laboratories, recently published its summary report. Credit: Carlos Jones, ORNL

The group’s fifth priority research direction addresses facilitating data management, analytics, and workflows across heterogeneous platforms. Collaborating across facilities often means, for example, that a computer scientist might run a workflow across DOE’s ESNet high performance network, a laptop, ORNL’s Spallation Neutron Source, and Cori at the National Energy Research Scientific Computing Center.

“In this scenario, instead of looking at a thousand nodes in a single architecture, you’re having to address extreme heterogeneity at the higher level of many networks, supercomputers, and storage systems, composed of many different types of technologies,” Vetter said.

Vetter stressed that computer science research must focus on ensuring application teams are productive by minimizing the amount of effort they spend porting and optimizing their software for extremely heterogeneous architectures, which are on the horizon.

“Ideally, teams would write their software once, and then run it anywhere with competitive performance,” Vetter said. “If we can develop solutions to our priority research directions, we can start to make progress toward this goal.”

The 2018 DOE ASCR Basic Research Needs Workshop on Extreme Heterogeneity and its final report were supported by DOE’s Office of Science. More workshop details are available at https://orau.gov/exheterogeneity2018, and the final report is available from OSTI (PDF).

ORNL is managed by UT–Battelle, LLC for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire