Top Ten Ways AI Affects HPC in 2019

By James Reinders

March 26, 2019

AI workloads are becoming ubiquitous, including running on the world’s fastest computers — thereby changing what we call HPC forever. As every organization plans for the future, AI workloads are on our minds — how do they affect programming, software needs, hardware demands, and training needs? In the upcoming year, specialists and AI experts will continue to come together to create new and innovative solutions.

Here are the top ten ways that AI will most impact HPC in 2019.

10. Tensors: Lingua franca for AI computations

Vector algebra usage gave rise to computers designed for vector computing. Early supercomputers from Cray were vector-supercomputers, which in turn encouraged expressing applications as vector and matrix algebra problems, which in turn reinforced computers being designed to ensure vector computations run fast. This reinforcing cycle has strongly defined HPC over the years. Tensor algebra can be embraced as a generalized matrix algebra, so it is a natural evolution of supercomputer mathematical capabilities, not a revolution. Any machine supporting matrix operations can do tensors operations already. Today, users of CPUs= see support for vectors and tensors, with high performance, via support from general purpose compilers, accelerated Pythons, enhanced libraries, and optimized frameworks. All these allow software developers to use vectors and tensors from their favorite environments with high performance.

Tensors are leaving a deep mark, as vectors did before them, on HPC in hardware, software, and our thinking.

9. Languages: Higher level programming

Fortran programs dominate HPC today in terms of cycles consumed, with C and C++ programs using up almost all of the other cycles in HPC. Accelerator cycles are most often supported through C interfaces, extensions, and libraries. Attempts to disrupt this with new languages have failed because the incumbent languages have users, code, and support that fit the applications that make up HPC.

AI brings new users with new demands, which will expand what languages we associate with HPC. They will not change the activities of most physicists using Fortran code, but a data scientist using MATLAB and Python want solutions tailored to their needs.

Python, and a cast of other productivity languages and frameworks, will seemingly be the masters of more and more HPC cycles. Their secret will be that their actual number crunching routines will still be written in C/C++/Fortran, but the AI programmer will neither know that, nor care about it.

8. Freedom to think differently: Replace legacy code by using the opportunity (and peril) to rethink approaches

HPC is steeped in legacy, and AI is new and relatively legacy free. Obviously, as AI matures it will create important legacy of its own that will need supporting. For now, as the two interact – it will encourage conversations about reimplementing legacy code, which in some cases may have been overdue. The excuse might be “let’s add some AI features to this code” but the reality will be some beneficial efforts as well as some serious wastes of time. Remember the many ‘convert to Java’ efforts, in the early days of the Java craze?

Like those crazy early Java days, any rush to rewrite code into a new form will have winners and losers. ROI will be the key, but predicting the outcome of efforts to innovate are often highly flawed.

7. Portability and security: Virtualization and containers

Security and portability — “can I safely run on my machine?” and “does it work on my machine?” — are problems that virtualization and containers seek to solve. Of course, security comes from a well-constructed connection of hardware security features and software security features. For many, virtualization and containers seem to best establish that combination.

Containers have caught the attention of many developers over virtual machines, because they are viewed as more agile than virtual machines for deployment, patching, cloud versatility, and they may save on virtual machine licensing costs.

It is not surprising that talks about containers at any HPC or AI oriented conference always seem to be standing room only. The interest is there, and reality seems to be coming along to support the interest. Python and Julia, for instance, scale much better when carefully configured — something containers can help deploy.

Containers offer a natural way to give a well-tuned environment to users, and the HPC world will see more and more usage of containers in 2019, in part due to AI user interest. The HPC world here will undoubtedly stress performant instances – which require optimized eco-systems. There is plenty of fine work in this area going on in this area – the HPC community will help bring it to light for all, to satisfy this craving for containers.

6. Size Matters: Big Data

Where there is AI, there is Big Data. Much focus with the AI community is on squeezing meaning out of very large data sets using very large data models. Yes, there are enough HPC applications with big file needs, that many HPC centers already have much of the infrastructure for handling big data problems well.

All HPC centers will take big data into consideration as a major requirement for new systems, with AI workloads being a major motivation for big data requirements.

Because of the high cost of memory, we have seen the ratio of memory size to FLOP/s erode for many years. This is a trend against big data. New capabilities around persistent memory offer a hope to reverse this trend and support big data models in large machines, including HPC machines, that we obviously want and need. These new memory technologies offer expansion of main memory, as well as local storage (SSDs).

I’m writing today about how AI affects HPC, but I can’t resist pointing out that HPC’s love of visualization will have a role in HPC affecting AI. Putting data closer to the processor, which is best suited to do real data visualization, is one of the biggest ways that HPC will affect AI/ML. The concept of using and understanding big data, and visualizing the data and analysis, are very much intertwined.

5. Compute for the Masses: Cloud

AI developers may already embrace cloud computing more than HPC developers. While HPC “in the cloud” has already been emerging, high performance computing for AI applications will accelerate “HPC in the cloud.”

4. Hardware: Interactive capabilities, and focus on powering libraries and frameworks

The number of workloads for AI is not huge. This in turn means that a small number of library interfaces and frameworks dominate what any “AI accelerator” needs to tout as selling points.

Interactivity, a long-standing request that has generally stayed “on the back burner” for HPC systems, is squarely placed “front and center” by AI programmers. How quickly this changes “HPC” remains to be seen, but innovation in this area in 2019 will be notable even if scattered and somewhat hidden. Interactivity may be called “personalization” as well.

More hardware diversity, interactivity support, and additional library/framework abstractions optimized for performance, are in store for HPC to support AI workloads. The HPC community’s focus on performance, will help illuminate where additional convergence in infrastructure will benefit data center deployments as well. No one wants to give up performance if they do not have to do so, the HPC community’s expertise will help commoditize performance for AI/ML leading to even more convergence of hardware technologies between the communities.

3. Melding of people: User diversity and added excitement about HPC

AI will inject a lot of fresh talent with diverse backgrounds. AI will bring democratization to HPC at an unprecedented scale. In prior years, “democratization of HPC” is a phrase used to describe how HPC, previously accessible to only those in large organizations, has been made accessible to smaller groups of engineers and scientists. Mathematical and physics problems may have driven early supercomputing workloads, but more recently many more users have found HPC workloads to be indispensable in fields including medicine, weather forecasting, and risk management.

AI brings a much wider community of users than HPC has previously seen, bring a whole new dimension to democratization of HPC. Add AI to the list of reasons to do HPC, and we continue to add more excitement in the pursuit of the highest performance computing in the world — HPC specialists and AI experts are combining to generate excitement we can all enjoy.

2. New investments: Inferencing

Machine learning generally can be thought of as consisting of a learning phase called “training,” and a “doing” phase called inferencing. It appears that the world needs a lot more cycles doing inferencing than cycles doing training, especially as we see machine learning ubiquitously embedded into solutions all around us. Market analysts tend to estimate that the market for hardware to do inferencing is 5-10X the size of hardware to do training.

With such a large market opportunity it is no surprise that it feels like the whole world is aiming to get a bigger piece of the inferencing market. Inferencing has been implemented on processors, FPGAs, GPUs, DSPs and a plethora of custom ASICs. Power, latency, and overall cost are key factors that give us a field of options with different selling points. High performance CPUs, coupled with low latency, easily reprogrammable, and predictable latency FPGAs seem a logical choice to supplement the current CPU-dominated world of inferencing. Time will tell.

Follow the money, and you’ll see that inferencing workloads will substantially impact all of computing including HPC.

1. Melding of applications: Rather than replacing after “rethinking” – we “blend” with the best of both worlds – expanding workload diversity and seeing all manner of workload convergence

Those with vision have resoundingly proven that there are many opportunities when HPC and AI come together. Inspiring research ranges from having a neutral net learn to “act like a Monte Carlo simulation” with very good results, at a tiny fraction of the computational needs; to integrating systems to spot patterns that can predict extreme weather such, as hurricanes, into climate or weather forecasting systems. Ideas are popping up everywhere now. A generative adversarial network (GAN) is a class of machine learning systems that many hold in high regard, and GANs will no doubt help blend the HPC world and the AI/ML work.

While it is true that very few applications combine HPC algorithms and AI techniques today — based on early results in this area, it is easy for me to predict that this is the future of HPC applications, and will constitute the biggest change coming to HPC because of AI.

Making sense of these ten forces

The story of computing does not change in one sense: it’s all about what the complete system does for its users. While needs change, the fact that a complete system is made up of hardware and software does not change. It is easy to get distracted by a single technology (hardware or software); the best systems carefully apply new technology where it will help the most. I’m very partial to calling this “selective acceleration” – with an emphasis on using acceleration when it matters. I like Python acceleration (a software technology leaning on the CPU), when I use Python a lot. I like FPGA acceleration when I need lots of low latency inferencing. I don’t bother with either, when I only need a little. This is the art of building a balanced system. This top-ten list, doesn’t change the reality that balance gives the best overall result for multi-purpose machines.

Conclusion: AI will use HPC, and that will change HPC forever

It is clear that AI will use HPC, and that will change HPC forever. In fact, AI may be the biggest change agent for HPC in its history. HPC has continuously evolved as disciplines have arrived with their own workloads, and it will also evolve for AI. I do not think debating convergence vs. intersection gives enough credit to the concept that AI users will simply join the community of HPC and put their own mark on it. And they will use non-HPC systems too, just like other HPC users.

There will be custom high-performance machines designed and built primarily for AI workloads, and other machines have AI workloads run on more general high-performance facilities with non-AI workloads as well. Balanced machines will apply acceleration when it makes sense with a strong need for high-performance flexible machines. In all cases, the AI will contribute to the future definition of what makes a computer super, and therefore adjust the course of HPC forever.

James Reinders is an HPC enthusiast and author of eight books with more than 30 years of industry experience, including 27 years at Intel Corporation (retired June 2016).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a province in Pavia, Italy), and delivered “as-a-service” via H Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire