Top Ten Ways AI Affects HPC in 2019

By James Reinders

March 26, 2019

AI workloads are becoming ubiquitous, including running on the world’s fastest computers — thereby changing what we call HPC forever. As every organization plans for the future, AI workloads are on our minds — how do they affect programming, software needs, hardware demands, and training needs? In the upcoming year, specialists and AI experts will continue to come together to create new and innovative solutions.

Here are the top ten ways that AI will most impact HPC in 2019.

10. Tensors: Lingua franca for AI computations

Vector algebra usage gave rise to computers designed for vector computing. Early supercomputers from Cray were vector-supercomputers, which in turn encouraged expressing applications as vector and matrix algebra problems, which in turn reinforced computers being designed to ensure vector computations run fast. This reinforcing cycle has strongly defined HPC over the years. Tensor algebra can be embraced as a generalized matrix algebra, so it is a natural evolution of supercomputer mathematical capabilities, not a revolution. Any machine supporting matrix operations can do tensors operations already. Today, users of CPUs= see support for vectors and tensors, with high performance, via support from general purpose compilers, accelerated Pythons, enhanced libraries, and optimized frameworks. All these allow software developers to use vectors and tensors from their favorite environments with high performance.

Tensors are leaving a deep mark, as vectors did before them, on HPC in hardware, software, and our thinking.

9. Languages: Higher level programming

Fortran programs dominate HPC today in terms of cycles consumed, with C and C++ programs using up almost all of the other cycles in HPC. Accelerator cycles are most often supported through C interfaces, extensions, and libraries. Attempts to disrupt this with new languages have failed because the incumbent languages have users, code, and support that fit the applications that make up HPC.

AI brings new users with new demands, which will expand what languages we associate with HPC. They will not change the activities of most physicists using Fortran code, but a data scientist using MATLAB and Python want solutions tailored to their needs.

Python, and a cast of other productivity languages and frameworks, will seemingly be the masters of more and more HPC cycles. Their secret will be that their actual number crunching routines will still be written in C/C++/Fortran, but the AI programmer will neither know that, nor care about it.

8. Freedom to think differently: Replace legacy code by using the opportunity (and peril) to rethink approaches

HPC is steeped in legacy, and AI is new and relatively legacy free. Obviously, as AI matures it will create important legacy of its own that will need supporting. For now, as the two interact – it will encourage conversations about reimplementing legacy code, which in some cases may have been overdue. The excuse might be “let’s add some AI features to this code” but the reality will be some beneficial efforts as well as some serious wastes of time. Remember the many ‘convert to Java’ efforts, in the early days of the Java craze?

Like those crazy early Java days, any rush to rewrite code into a new form will have winners and losers. ROI will be the key, but predicting the outcome of efforts to innovate are often highly flawed.

7. Portability and security: Virtualization and containers

Security and portability — “can I safely run on my machine?” and “does it work on my machine?” — are problems that virtualization and containers seek to solve. Of course, security comes from a well-constructed connection of hardware security features and software security features. For many, virtualization and containers seem to best establish that combination.

Containers have caught the attention of many developers over virtual machines, because they are viewed as more agile than virtual machines for deployment, patching, cloud versatility, and they may save on virtual machine licensing costs.

It is not surprising that talks about containers at any HPC or AI oriented conference always seem to be standing room only. The interest is there, and reality seems to be coming along to support the interest. Python and Julia, for instance, scale much better when carefully configured — something containers can help deploy.

Containers offer a natural way to give a well-tuned environment to users, and the HPC world will see more and more usage of containers in 2019, in part due to AI user interest. The HPC world here will undoubtedly stress performant instances – which require optimized eco-systems. There is plenty of fine work in this area going on in this area – the HPC community will help bring it to light for all, to satisfy this craving for containers.

6. Size Matters: Big Data

Where there is AI, there is Big Data. Much focus with the AI community is on squeezing meaning out of very large data sets using very large data models. Yes, there are enough HPC applications with big file needs, that many HPC centers already have much of the infrastructure for handling big data problems well.

All HPC centers will take big data into consideration as a major requirement for new systems, with AI workloads being a major motivation for big data requirements.

Because of the high cost of memory, we have seen the ratio of memory size to FLOP/s erode for many years. This is a trend against big data. New capabilities around persistent memory offer a hope to reverse this trend and support big data models in large machines, including HPC machines, that we obviously want and need. These new memory technologies offer expansion of main memory, as well as local storage (SSDs).

I’m writing today about how AI affects HPC, but I can’t resist pointing out that HPC’s love of visualization will have a role in HPC affecting AI. Putting data closer to the processor, which is best suited to do real data visualization, is one of the biggest ways that HPC will affect AI/ML. The concept of using and understanding big data, and visualizing the data and analysis, are very much intertwined.

5. Compute for the Masses: Cloud

AI developers may already embrace cloud computing more than HPC developers. While HPC “in the cloud” has already been emerging, high performance computing for AI applications will accelerate “HPC in the cloud.”

4. Hardware: Interactive capabilities, and focus on powering libraries and frameworks

The number of workloads for AI is not huge. This in turn means that a small number of library interfaces and frameworks dominate what any “AI accelerator” needs to tout as selling points.

Interactivity, a long-standing request that has generally stayed “on the back burner” for HPC systems, is squarely placed “front and center” by AI programmers. How quickly this changes “HPC” remains to be seen, but innovation in this area in 2019 will be notable even if scattered and somewhat hidden. Interactivity may be called “personalization” as well.

More hardware diversity, interactivity support, and additional library/framework abstractions optimized for performance, are in store for HPC to support AI workloads. The HPC community’s focus on performance, will help illuminate where additional convergence in infrastructure will benefit data center deployments as well. No one wants to give up performance if they do not have to do so, the HPC community’s expertise will help commoditize performance for AI/ML leading to even more convergence of hardware technologies between the communities.

3. Melding of people: User diversity and added excitement about HPC

AI will inject a lot of fresh talent with diverse backgrounds. AI will bring democratization to HPC at an unprecedented scale. In prior years, “democratization of HPC” is a phrase used to describe how HPC, previously accessible to only those in large organizations, has been made accessible to smaller groups of engineers and scientists. Mathematical and physics problems may have driven early supercomputing workloads, but more recently many more users have found HPC workloads to be indispensable in fields including medicine, weather forecasting, and risk management.

AI brings a much wider community of users than HPC has previously seen, bring a whole new dimension to democratization of HPC. Add AI to the list of reasons to do HPC, and we continue to add more excitement in the pursuit of the highest performance computing in the world — HPC specialists and AI experts are combining to generate excitement we can all enjoy.

2. New investments: Inferencing

Machine learning generally can be thought of as consisting of a learning phase called “training,” and a “doing” phase called inferencing. It appears that the world needs a lot more cycles doing inferencing than cycles doing training, especially as we see machine learning ubiquitously embedded into solutions all around us. Market analysts tend to estimate that the market for hardware to do inferencing is 5-10X the size of hardware to do training.

With such a large market opportunity it is no surprise that it feels like the whole world is aiming to get a bigger piece of the inferencing market. Inferencing has been implemented on processors, FPGAs, GPUs, DSPs and a plethora of custom ASICs. Power, latency, and overall cost are key factors that give us a field of options with different selling points. High performance CPUs, coupled with low latency, easily reprogrammable, and predictable latency FPGAs seem a logical choice to supplement the current CPU-dominated world of inferencing. Time will tell.

Follow the money, and you’ll see that inferencing workloads will substantially impact all of computing including HPC.

1. Melding of applications: Rather than replacing after “rethinking” – we “blend” with the best of both worlds – expanding workload diversity and seeing all manner of workload convergence

Those with vision have resoundingly proven that there are many opportunities when HPC and AI come together. Inspiring research ranges from having a neutral net learn to “act like a Monte Carlo simulation” with very good results, at a tiny fraction of the computational needs; to integrating systems to spot patterns that can predict extreme weather such, as hurricanes, into climate or weather forecasting systems. Ideas are popping up everywhere now. A generative adversarial network (GAN) is a class of machine learning systems that many hold in high regard, and GANs will no doubt help blend the HPC world and the AI/ML work.

While it is true that very few applications combine HPC algorithms and AI techniques today — based on early results in this area, it is easy for me to predict that this is the future of HPC applications, and will constitute the biggest change coming to HPC because of AI.

Making sense of these ten forces

The story of computing does not change in one sense: it’s all about what the complete system does for its users. While needs change, the fact that a complete system is made up of hardware and software does not change. It is easy to get distracted by a single technology (hardware or software); the best systems carefully apply new technology where it will help the most. I’m very partial to calling this “selective acceleration” – with an emphasis on using acceleration when it matters. I like Python acceleration (a software technology leaning on the CPU), when I use Python a lot. I like FPGA acceleration when I need lots of low latency inferencing. I don’t bother with either, when I only need a little. This is the art of building a balanced system. This top-ten list, doesn’t change the reality that balance gives the best overall result for multi-purpose machines.

Conclusion: AI will use HPC, and that will change HPC forever

It is clear that AI will use HPC, and that will change HPC forever. In fact, AI may be the biggest change agent for HPC in its history. HPC has continuously evolved as disciplines have arrived with their own workloads, and it will also evolve for AI. I do not think debating convergence vs. intersection gives enough credit to the concept that AI users will simply join the community of HPC and put their own mark on it. And they will use non-HPC systems too, just like other HPC users.

There will be custom high-performance machines designed and built primarily for AI workloads, and other machines have AI workloads run on more general high-performance facilities with non-AI workloads as well. Balanced machines will apply acceleration when it makes sense with a strong need for high-performance flexible machines. In all cases, the AI will contribute to the future definition of what makes a computer super, and therefore adjust the course of HPC forever.

James Reinders is an HPC enthusiast and author of eight books with more than 30 years of industry experience, including 27 years at Intel Corporation (retired June 2016).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about how AI can benefit their business operations and products. Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman Institute for Advanced Science and Technology at the Universi Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Gordon Bell Special Prize for High Performance Computing-Ba Read more…

By Oliver Peckham

AWS Solution Channel

Introducing AWS ParallelCluster as an Intel Select Solution

High performance computing (HPC) system owners can spend weeks or months researching, procuring, and assembling components to build HPC clusters to run their workloads. Understanding and managing the complexities of compute, storage, networking, and software requirements can be confusing and time-consuming, slowing innovation and results. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 19, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 19, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

SC20 Keynote: Climate, Exascale & the Ultimate Answer

November 19, 2020

SC20’s keynote was delivered by renowned meteorologist and climatologist Bjorn Stevens, a director at the Max Planck Institute for Meteorology since 2008 and a professor at the University of Hamburg. In his keynote, Stevens traced the history of climate science from its earliest days through... Read more…

By Oliver Peckham

EuroHPC Exec. Dir. Talks Procurement, EPI, and Europe’s Efforts to Control its HPC Destiny

November 19, 2020

While much of the HPC community’s attention is fixed on SC20’s flood of news and new product announcements, Anders Dam Jensen, the newly-minted executive di Read more…

By Steve Conway

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This