Top Ten Ways AI Affects HPC in 2019

By James Reinders

March 26, 2019

AI workloads are becoming ubiquitous, including running on the world’s fastest computers — thereby changing what we call HPC forever. As every organization plans for the future, AI workloads are on our minds — how do they affect programming, software needs, hardware demands, and training needs? In the upcoming year, specialists and AI experts will continue to come together to create new and innovative solutions.

Here are the top ten ways that AI will most impact HPC in 2019.

10. Tensors: Lingua franca for AI computations

Vector algebra usage gave rise to computers designed for vector computing. Early supercomputers from Cray were vector-supercomputers, which in turn encouraged expressing applications as vector and matrix algebra problems, which in turn reinforced computers being designed to ensure vector computations run fast. This reinforcing cycle has strongly defined HPC over the years. Tensor algebra can be embraced as a generalized matrix algebra, so it is a natural evolution of supercomputer mathematical capabilities, not a revolution. Any machine supporting matrix operations can do tensors operations already. Today, users of CPUs= see support for vectors and tensors, with high performance, via support from general purpose compilers, accelerated Pythons, enhanced libraries, and optimized frameworks. All these allow software developers to use vectors and tensors from their favorite environments with high performance.

Tensors are leaving a deep mark, as vectors did before them, on HPC in hardware, software, and our thinking.

9. Languages: Higher level programming

Fortran programs dominate HPC today in terms of cycles consumed, with C and C++ programs using up almost all of the other cycles in HPC. Accelerator cycles are most often supported through C interfaces, extensions, and libraries. Attempts to disrupt this with new languages have failed because the incumbent languages have users, code, and support that fit the applications that make up HPC.

AI brings new users with new demands, which will expand what languages we associate with HPC. They will not change the activities of most physicists using Fortran code, but a data scientist using MATLAB and Python want solutions tailored to their needs.

Python, and a cast of other productivity languages and frameworks, will seemingly be the masters of more and more HPC cycles. Their secret will be that their actual number crunching routines will still be written in C/C++/Fortran, but the AI programmer will neither know that, nor care about it.

8. Freedom to think differently: Replace legacy code by using the opportunity (and peril) to rethink approaches

HPC is steeped in legacy, and AI is new and relatively legacy free. Obviously, as AI matures it will create important legacy of its own that will need supporting. For now, as the two interact – it will encourage conversations about reimplementing legacy code, which in some cases may have been overdue. The excuse might be “let’s add some AI features to this code” but the reality will be some beneficial efforts as well as some serious wastes of time. Remember the many ‘convert to Java’ efforts, in the early days of the Java craze?

Like those crazy early Java days, any rush to rewrite code into a new form will have winners and losers. ROI will be the key, but predicting the outcome of efforts to innovate are often highly flawed.

7. Portability and security: Virtualization and containers

Security and portability — “can I safely run on my machine?” and “does it work on my machine?” — are problems that virtualization and containers seek to solve. Of course, security comes from a well-constructed connection of hardware security features and software security features. For many, virtualization and containers seem to best establish that combination.

Containers have caught the attention of many developers over virtual machines, because they are viewed as more agile than virtual machines for deployment, patching, cloud versatility, and they may save on virtual machine licensing costs.

It is not surprising that talks about containers at any HPC or AI oriented conference always seem to be standing room only. The interest is there, and reality seems to be coming along to support the interest. Python and Julia, for instance, scale much better when carefully configured — something containers can help deploy.

Containers offer a natural way to give a well-tuned environment to users, and the HPC world will see more and more usage of containers in 2019, in part due to AI user interest. The HPC world here will undoubtedly stress performant instances – which require optimized eco-systems. There is plenty of fine work in this area going on in this area – the HPC community will help bring it to light for all, to satisfy this craving for containers.

6. Size Matters: Big Data

Where there is AI, there is Big Data. Much focus with the AI community is on squeezing meaning out of very large data sets using very large data models. Yes, there are enough HPC applications with big file needs, that many HPC centers already have much of the infrastructure for handling big data problems well.

All HPC centers will take big data into consideration as a major requirement for new systems, with AI workloads being a major motivation for big data requirements.

Because of the high cost of memory, we have seen the ratio of memory size to FLOP/s erode for many years. This is a trend against big data. New capabilities around persistent memory offer a hope to reverse this trend and support big data models in large machines, including HPC machines, that we obviously want and need. These new memory technologies offer expansion of main memory, as well as local storage (SSDs).

I’m writing today about how AI affects HPC, but I can’t resist pointing out that HPC’s love of visualization will have a role in HPC affecting AI. Putting data closer to the processor, which is best suited to do real data visualization, is one of the biggest ways that HPC will affect AI/ML. The concept of using and understanding big data, and visualizing the data and analysis, are very much intertwined.

5. Compute for the Masses: Cloud

AI developers may already embrace cloud computing more than HPC developers. While HPC “in the cloud” has already been emerging, high performance computing for AI applications will accelerate “HPC in the cloud.”

4. Hardware: Interactive capabilities, and focus on powering libraries and frameworks

The number of workloads for AI is not huge. This in turn means that a small number of library interfaces and frameworks dominate what any “AI accelerator” needs to tout as selling points.

Interactivity, a long-standing request that has generally stayed “on the back burner” for HPC systems, is squarely placed “front and center” by AI programmers. How quickly this changes “HPC” remains to be seen, but innovation in this area in 2019 will be notable even if scattered and somewhat hidden. Interactivity may be called “personalization” as well.

More hardware diversity, interactivity support, and additional library/framework abstractions optimized for performance, are in store for HPC to support AI workloads. The HPC community’s focus on performance, will help illuminate where additional convergence in infrastructure will benefit data center deployments as well. No one wants to give up performance if they do not have to do so, the HPC community’s expertise will help commoditize performance for AI/ML leading to even more convergence of hardware technologies between the communities.

3. Melding of people: User diversity and added excitement about HPC

AI will inject a lot of fresh talent with diverse backgrounds. AI will bring democratization to HPC at an unprecedented scale. In prior years, “democratization of HPC” is a phrase used to describe how HPC, previously accessible to only those in large organizations, has been made accessible to smaller groups of engineers and scientists. Mathematical and physics problems may have driven early supercomputing workloads, but more recently many more users have found HPC workloads to be indispensable in fields including medicine, weather forecasting, and risk management.

AI brings a much wider community of users than HPC has previously seen, bring a whole new dimension to democratization of HPC. Add AI to the list of reasons to do HPC, and we continue to add more excitement in the pursuit of the highest performance computing in the world — HPC specialists and AI experts are combining to generate excitement we can all enjoy.

2. New investments: Inferencing

Machine learning generally can be thought of as consisting of a learning phase called “training,” and a “doing” phase called inferencing. It appears that the world needs a lot more cycles doing inferencing than cycles doing training, especially as we see machine learning ubiquitously embedded into solutions all around us. Market analysts tend to estimate that the market for hardware to do inferencing is 5-10X the size of hardware to do training.

With such a large market opportunity it is no surprise that it feels like the whole world is aiming to get a bigger piece of the inferencing market. Inferencing has been implemented on processors, FPGAs, GPUs, DSPs and a plethora of custom ASICs. Power, latency, and overall cost are key factors that give us a field of options with different selling points. High performance CPUs, coupled with low latency, easily reprogrammable, and predictable latency FPGAs seem a logical choice to supplement the current CPU-dominated world of inferencing. Time will tell.

Follow the money, and you’ll see that inferencing workloads will substantially impact all of computing including HPC.

1. Melding of applications: Rather than replacing after “rethinking” – we “blend” with the best of both worlds – expanding workload diversity and seeing all manner of workload convergence

Those with vision have resoundingly proven that there are many opportunities when HPC and AI come together. Inspiring research ranges from having a neutral net learn to “act like a Monte Carlo simulation” with very good results, at a tiny fraction of the computational needs; to integrating systems to spot patterns that can predict extreme weather such, as hurricanes, into climate or weather forecasting systems. Ideas are popping up everywhere now. A generative adversarial network (GAN) is a class of machine learning systems that many hold in high regard, and GANs will no doubt help blend the HPC world and the AI/ML work.

While it is true that very few applications combine HPC algorithms and AI techniques today — based on early results in this area, it is easy for me to predict that this is the future of HPC applications, and will constitute the biggest change coming to HPC because of AI.

Making sense of these ten forces

The story of computing does not change in one sense: it’s all about what the complete system does for its users. While needs change, the fact that a complete system is made up of hardware and software does not change. It is easy to get distracted by a single technology (hardware or software); the best systems carefully apply new technology where it will help the most. I’m very partial to calling this “selective acceleration” – with an emphasis on using acceleration when it matters. I like Python acceleration (a software technology leaning on the CPU), when I use Python a lot. I like FPGA acceleration when I need lots of low latency inferencing. I don’t bother with either, when I only need a little. This is the art of building a balanced system. This top-ten list, doesn’t change the reality that balance gives the best overall result for multi-purpose machines.

Conclusion: AI will use HPC, and that will change HPC forever

It is clear that AI will use HPC, and that will change HPC forever. In fact, AI may be the biggest change agent for HPC in its history. HPC has continuously evolved as disciplines have arrived with their own workloads, and it will also evolve for AI. I do not think debating convergence vs. intersection gives enough credit to the concept that AI users will simply join the community of HPC and put their own mark on it. And they will use non-HPC systems too, just like other HPC users.

There will be custom high-performance machines designed and built primarily for AI workloads, and other machines have AI workloads run on more general high-performance facilities with non-AI workloads as well. Balanced machines will apply acceleration when it makes sense with a strong need for high-performance flexible machines. In all cases, the AI will contribute to the future definition of what makes a computer super, and therefore adjust the course of HPC forever.

James Reinders is an HPC enthusiast and author of eight books with more than 30 years of industry experience, including 27 years at Intel Corporation (retired June 2016).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

AI Silicon Startup Graphcore Launches Channel Partner Program

September 23, 2020

AI compute platform vendor Graphcore has launched its first formal global channel partner program to promote and boost the sales of its AI processors and blade computing products. The formalized, all-new Graphcore Elite Partner Program follows the company’s past history of working with several... Read more…

By Todd R. Weiss

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the new platforms will deliver 50 percent and 40 percent more... Read more…

By Tiffany Trader

Microsoft’s Azure Quantum Platform Now Offers Toshiba’s ‘Simulated Bifurcation Machine’

September 22, 2020

While pure-play quantum computing (QC) gets most of the QC-related attention, there’s also been steady progress adapting quantum methods for select use on classical computers. Today, Microsoft announced that Toshiba’ Read more…

By John Russell

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availability of instances with Nvidia’s newest GPU, the A100. OCI als Read more…

By John Russell

AWS Solution Channel

The Water Institute of the Gulf runs compute-heavy storm surge and wave simulations on AWS

The Water Institute of the Gulf (Water Institute) runs its storm surge and wave analysis models on Amazon Web Services (AWS)—a task that sometimes requires large bursts of compute power. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

IBM, CQC Enable Cloud-based Quantum Random Number Generation

September 21, 2020

IBM and Cambridge Quantum Computing (CQC) have partnered to achieve progress on one of the major business aspirations for quantum computing – the goal of generating verified, truly random numbers that can be used for a Read more…

By Todd R. Weiss

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the new platforms will deliver 50 percent and 40 percent more... Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Nvidia Commits to Buy Arm for $40B

September 14, 2020

Nvidia is acquiring semiconductor design company Arm Ltd. for $40 billion from SoftBank in a blockbuster deal that catapults the GPU chipmaker to a dominant position in the datacenter while helping troubled SoftBank reverse its financial woes. The deal, which has been rumored for... Read more…

By Todd R. Weiss and George Leopold

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics code. These optimizations will be incorporated into release 2.15 with patches available for earlier versions. Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This