Intel Launches Cascade Lake Xeons with Up to 56 Cores

By Tiffany Trader

April 2, 2019

At Intel’s Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted its Optane persistent memory module, along with other products (more below). Notable for HPC watchers was the launch of Cascade Lake-AP (Advanced Performance), now known as the Xeon Platinum 9200 processor, designed for high-performance computing, advanced analytics, artificial intelligence and high-density infrastructures. All told, Intel is introducing more than 50 new standard Cascade Lake SKUs in addition to dozens of custom SKUs.

Intel had previously disclosed that Cascade Lake-AP would have up to 48 cores, but today revealed a product with up to 56 cores in a multi-chip module (two dies, one package), capable of 3.2 double-precision teraflops (Linpack, per Intel benchnmarking), the most flops-performant Intel chip since the discontinued Knights Landing. With 12 channels of memory (six per die), the 9200 also offers the highest DDR4 native memory bandwidth support of any Intel Xeon processor platform.

From left clockwise: Intel Xeon Platinum 9200 Processor, 2nd-Gen Intel Xeon Scalable Processor, Intel Xeon D-1600 Processor, Optane DC Persistent Memory. Source:Intel

There are four SKUs in the 9200 family–based on 14nm technology like the rest of the Cascade Lake microarchitecture – 32, 48 and 56 core options with TDPs ranging from 250 watts to 400 watts.

•   Platinum 9282: 56 cores, 2.6 GHz base frequency (3.8 GHz turbo), 77 MB L3 cache, 400 watt TDP
•   Platinum 9242: 48 cores, 2.3 GHz base frequency (3.8 GHz turbo), 71.5 MB L3 cache, 350 watt TDP
•   Platinum 9222: 32 cores, 2.3 GHz base frequency (3.7 GHz turbo), 71.5 MB L3 cache, 250 watt TDP
•   Platinum 9221: 32 cores, 2.1 GHz base frequency (3.7 GHz turbo), 71.5 MB L3 cache, 250 watt TDP

The first announced customer for the Xeon Platinum 9200 is the North German Supercomputing Alliance (HLRN), which supports scientific computing needs for seven of Germany’s 15 states. Work on a new Atos Bull system — HLRN-4, located at University of Göttingen — began in 2018 with existing Intel Xeons (Intel Skylake Gold 6148 CPUs). Slated for completion by the end of the year, the full system will have nearly a quarter million compute cores, providing on the order of 16 petaflops of performance, a six-fold increase over the previous HLRN system.

“We are a very demanding client,” said Ramin Yahyapour, professor of computer science at University of Göttingen and managing director of GWDG, a joint compute center of Max Plank society and University of Göttingen. “A lot of our research is getting more compute and data intensive. We are not looking for peak theoretical performance but for real system performance, and the Intel Xeon Scalable Advanced Performance is giving us this kind of performance. In addition the CPU is quite good for artificial intelligence and machine learning.”

The Xeon 9200 has shown early success on the SPECrate 2017 Floating Point benchmark, as demonstrated by Navin Shenoy, executive vice president and general manager, Intel’s Data Center Group, who keynoted today’s event.

Running on a two-socket server with 56 cores per processor, Shenoy showed a new record of 522 fp_rate versus the previous record of 282 fp_rate. The time stamp you see on right hand side (see slide at right) shows you that the benchmark finished just a couple hours prior to the demonstration.

“SPECrate is a traditional high performance computing benchmark,” said Shenoy. “It’s CPU-intensive, it takes advantage of the core count, and it takes advantage of the memory bandwidth.” Intel has submitted its results to the SPEC committee and is awaiting their review.

At today’s launch gala, the company revealed a total of seven new data-centric products, what Intel CEO Bob Swan and other Intelites referenced as “the first truly data-centric portfolio of products.”

In addition to the Cascade Lake introductions, Intel also announced the Intel Ethernet 800 series adapter which supports 25, 50 and 100 Gigabit transfer speeds; the latest Optane SSD with dual-port capability; the QLC NAND SSD Ruler drive (the industry’s first EDSFF compliant drive, which packs a petabyte of storage into a ruler form factor); Optane Data Center Persistent Memory (Google and the Texas Advanced Computing Center are the first customers); the Xeon D 1600 chip for “power and space efficient network processing;” and the company’s first 10nm FPGA–the Intel Agilex series–offering “a leap forward in programmable acceleration.”

Intel Data-Centric Innovation Day, April 2, 2019 (source: Intel livestream)

Of the new Optane persistent memory module, Shenoy said, “I’m holding 512 GB of memory in my hand. This is 2-4X what you can get with DRAM. We expect system capacity in a server system to scale to 4.5 TB per socket or 36 TB in an 8-socket system [when combined with traditional DRAM]. That’s three times larger than what we were able to do with the first-generation of Xeon Scalable.”

Intel’s Cascade Lake stack includes more than 50 standard SKUs complemented by dozens of custom offerings.

“We are delivering 8-core Xeons all the way up to 56-core, the highest core count we’ve ever delivered on Xeon,” said Shenoy. “We are delivering support for 1- 2- 4- and 8-socket glueless support for Xeon.”

New features built into the Cascade Lake family include integrated Deep Learning Boost (DL Boost) for AI deep learning inferencing acceleration and support for Intel Optane DC persistent memory (excluding Bronze, Silver and Platinum 9200 parts). Intel also said the new Xeons include CPU architecture enhancements to provide hardware security mitigations for side channel security attacks.

With a combination of hardware and software improvements on DL Boost, Intel is reporting a 14x deep learning inference performance improvement from the Xeon Scalable first-generation in July 2017, and with Xeon Platinum it is seeing a further 2x speedup (which makes sense since it’s essentially two CPUs in one-package).

Shenoy said the entire ecosystem is ready to ship now and that the second-generation Scalable Xeon will be “the fastest-ramping Xeon ever.”

Here’s a rundown on the announced second-gen Scalable Xeon lineup (per company literature):

  • Intel Xeon Platinum Processor (8200 Series)
    • Best performance, business agility, hardware-enhanced security and built-in AI.
    • Up to 28 cores and 2, 4 and 8+ socket configurations.
    • Top memory bandwidth and a third UPI link for increased I/O bandwidth.
  • Intel Xeon Gold Processor (6200 Series)
    • Networking Specialized (NFVi optimized) SKUs with Intel Speed Select Technology – Base Frequency.
    • Up to 1.76x NFV workload perf improvement and additional flexibility to enable up to 8 high-priority cores that support virtualized workload acceleration for maximum performance and power efficiency.
    • Up to 24 cores (6552 SKU)
  • Intel Xeon Gold Processor (5200 Series)
    • Networking Specialized (NFVi optimized) SKUs with Intel Speed Select Technology – Base Frequency.
    • Up to 1.76x NFV workload perf improvement and additional flexibility to enable 4 high priority cores that support virtualized workload acceleration for maximum performance and power efficiency.
    • Up to 18 cores.
  • Intel Xeon Silver Processor (4200 Series)
    • Efficient performance at low power and built-in AI.
    • Up to 12 cores and as low as 70W TDP with improved memory channel performance.
    • Intel Turbo Boost Technology and Intel Hyper-Threading technology.
  • Intel Xeon Bronze Processor (3200 Series)
    • Entry-level performance and built-in AI.
    • The 3100 series provides a reliable upgrade over Intel Xeon E processors and is intended for small and medium businesses.
    • Up to 8 cores.

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Simulating Car Crashes with Supercomputers – and Lego

October 18, 2019

It’s an experiment many of us have carried out at home: crashing two Lego creations into each other, bricks flying everywhere. But for the researchers at the General German Automobile Club (ADAC) – which is comparabl Read more…

By Oliver Peckham

NASA Uses Deep Learning to Monitor Solar Weather

October 17, 2019

Solar flares may be best-known as sci-fi MacGuffins, but those flares – and other space weather – can have serious impacts on not only spacecraft and satellites, but also on Earth-based systems such as radio communic Read more…

By Oliver Peckham

Federated Learning Applied to Cancer Research

October 17, 2019

The ability to share and analyze data while protecting patient privacy is giving medical researchers a new tool in their efforts to use what one vendor calls “federated learning” to train models based on diverse data Read more…

By George Leopold

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departure from past practice, the NSB has divided the 2020 S&E Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

How Do We Power the New Industrial Revolution?

[Attend the IBM LSF, HPC & AI User Group Meeting at SC19 in Denver on November 19!]

Almost everyone is talking about artificial intelligence (AI). Read more…

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departu Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This