Intel Extends FPGA Ecosystem with 10nm Agilex

By Doug Black

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter acceleration needs are concerned – has compelled IT managers and chipmakers to venture out, increasingly, beyond CPUs and GPUs. The “inherent parallelism” of FPGAs (see below) to handle specialized workloads in AI- and HPDA-related implementations has brought on greater investments from IT decision makers and vendors, who see increasing justification for the challenge of FPGA programming. Of course, adoption of unfamiliar technologies is always painful and slow, particularly those without a built-out ecosystem of frameworks and APIs that simplify their use.

Why are FPGAs bursting out of their communication, industrial and military niches and into the datacenter? Partly because of the limits of CPUs, which have their roots on the desktop and were, said Steve Conway, senior research VP at Hyperion Research, never really intended for advanced computing. In time-critical HPDA and AI workload environments, the CPU is out of its league.

“They’re very economical, but kind of a loose fit for a lot of (high performance computing),” said Conway, “loose enough that they’ve left room for other kinds of processors to kind of fill in the gaps where x86 doesn’t really excel.”

The good news is new technologies are coming on line that ease FPGA integration with other parts of the datacenter technology stack, including the CPU workhorse (see below).

Another part of the answer is the FPGAs’ aforementioned parallelism. “Parallel processing” usually means breaking up a workload into pieces and assigning a high number of CPU nodes to run the job in parallel. But the CPU itself processes sequentially, so that algorithmic problems are distributed into a series of operations and executed in a sequence.

That’s inherently slower than FPGAs, which can do parallel processing within the chip itself: algorithmic problems can be distributed so that multiple parallel operations happen simultaneously, executing the algorithm all at one time.

With the deluge of data flooding in from devices and sensors (we hear it said that half the world’s data has been generated in the last two years; only 2 percent of data has been analyzed), FPGAs are particularly suited for real/near time streaming data analytics. Here’s how Prabhat K. Gupta, founder and CEO of Megh Computing, a provider of real-time analytics acceleration for retail, finance and communication companies, put it recently in an article (“Why CTOs Should Reconsider FPGAs”) published in sister publication Datanami.

As enterprises transition from reliance on traditional business intelligence to advanced analytics via machine learning and deep learning, the demands on computing infrastructure increase exponentially. These high volumes of streaming data require new levels of performance, including lower latency and higher throughput. In this competitive environment, CTOs must step up their infrastructure and use the most efficient tools and programs available in order to differentiate their enterprises. However, many CTOs are overlooking a key technology needed to do so: field-programmable gate array (FPGA)-based accelerators.

While more organizations embrace “real-time analytics solutions based on a software platform using Kafka, Flink or similar frameworks for streaming the data, and Spark Streaming framework as a distributed framework for processing the data,” Gupta said, they’re encountering scaling problems as they “expand the number of nodes in use to deal with the influx of data… These open source or proprietary software-only solutions cannot keep pace with increasing computational demands and low latencies required to support real-time analytics use cases.”

The problem with FPGAs is programming. Patrick Moorhead, president and principal analyst, Moor Insights & Strategy, told us that in a left-to-right list of processor architectures, by degree of programming difficulty, the order would be: CPUs, GPUs, FPGAs and ASICs. FPGA programming is difficult, in part, because they are re-programmable – but this also is a strength when used for workloads, such as 5G, in which standards have not yet settled. “You can program an FPGA to do anything, they’re perfect for environments that change.”

Leading the FPGA adoption charge are Intel and Xilinx – not only by advancing FPGA performance but by developing, by themselves and within consortia, the support technologies that ease FPGAs integration and programmability. Intel jumped into the FPGA arena in 2015 with its acquisition of Altera for $17 billion, and proceeded to build on Altera technology as it developed its FPGA-related offering. Now, with the launch last week of its Agilex product line, the company has introduced its first Intel-built FPGA processor. It combines FPGA fabric built on Intel’s 10nm process with its heterogeneous 3D SiP technology that enables integration of analog, memory, custom computing, custom I/O and Intel eASIC device tiles into a single package with the FPGA fabric. The idea, Intel said, is to deliver “a custom logic continuum with reusable IPs through a migration path from FPGA to structured ASIC.”

Agilex incorporates Intel’s second generation HyperFlex Architecture, which the company said has up to 40 percent higher throughput compared with Intel Stratix 10 FPGAs and up to 40 teraflops of digital signal processor (DSP) performance. It supports the higher bandwidth of PCIe Gen 5 and supports up to 112 Gbps data rates, according to Intel. For memory, Agilex supports DDR5, HBM, Intel Optane DC persistent memory.

Beyond more processing power, Intel invested in Agilex’s ability to play well with others.

“Integration across the Intel portfolio is our focus,” said Patrick Dorsey, VP/GM product marketing, Intel Programmable Solutions Group, at the company’s launch event last week in San Francisco, noting that, because Agilex is the first FPGA developed completely by Intel, it’s integrated with Intel hardware and software development capabilities, providing “a common developer experience not only for FPGAs but for the rest of the Intel portfolio.”

The developer capabilities include One API, which Intel calls “a software-friendly heterogeneous programming environment designed to simplify the programming of diverse computing engines….” One API includes a “unified portfolio” of developer tools for mapping software to the hardware that can best accelerate the code. A public project release is expected to be available in 2019, Intel said.

“What I like about what Intel’s doing,” said Moorhead, “is they’re making One AI scale across CPUs, GPUs, fixed-function ASICs and FPGAs, so the programmer…would write the program based on the workload and…One API senses the most efficient processor in the system for the workload, (it) sends the work to the right processor. I refer to it as the ‘magic API,’ it’s the holy grail of accelerators because the thing that’s holding back these accelerators is they require a niche programmer.”

For interconnectivity, Agilex supports the recently announced Intel-led Compute Express Link (CXL), a cache- and memory-coherent interconnect built on the PCI Express infrastructure designed to deliver high-speed communications between the CPU and multiple accelerators, including FPGAs.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition of HPC leader Jack Wells, director of science, Oak Ridge Le Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

5 Benefits Artificial Intelligence Brings to HPC

According to findings from Hyperion Research, simulation is primarily responsible for expanding the global HPC market from $2 billion in 1990 to a projected $38 billion in 2022. Read more…

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage and data management for AI, big data and HPC acceleration. I Read more…

By Doug Black

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition Read more…

By John Russell

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage Read more…

By Doug Black

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This