Google Open Sources TensorFlow Version of MorphNet DL Tool

By John Russell

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expensive in terms of computational resources and time,” write Andrew Poon and Dhyanesh Narayanan on Google’s Research blog. “Approaches such as Neural Architecture Search and AdaNet use machine learning to search the design space in order to find improved architectures. An alternative is to take an existing architecture for a similar problem and, in one shot, optimize it for the task at hand.”

In the blog, they announce Google has open sourced a TensorFlow implementation of its MorphNet tool which permits taking an existing DNN developed for one problem and rapidly adopting it for another. “MorphNet takes an existing neural network as input and produces a new neural network that is smaller, faster, and yields better performance tailored to a new problem. We’ve applied the technique to Google-scale problems to design production-serving networks that are both smaller and more accurate, and now we have open sourced the TensorFlow implementation of MorphNet to the community so that you can use it to make your models more efficient,” they write.

For DNN developers and users, the new tool could save time and simplify networks.

“MorphNet optimizes a neural network through a cycle of shrinking and expanding phases,” write Poon and Narayanan. “In the shrinking phase, MorphNet identifies inefficient neurons and prunes them from the network by applying a sparsifying regularizer such that the total loss function of the network includes a cost for each neuron. However, rather than applying a uniform cost per neuron, MorphNet calculates a neuron cost with respect to the targeted resource. As training progresses, the optimizer is aware of the resource cost when calculating gradients, and thus learns which neurons are resource-efficient and which can be removed.”

Poon and Narayanan present several examples and bullet out the following “four key value propositions offered by MorphNet:”

  • Targeted Regularization. The approach that MorphNet takes towards regularization is more intentional than other sparsifying regularizers. In particular, the MorphNet approach to induce better sparsification is targeted at the reduction of a particular resource (such as FLOPs per inference or model size). This enables better control of the network structures induced by MorphNet, which can be markedly different depending on the application domain and associated constraints.For example, the left panel of the figure below presents a baseline network with the commonly used ResNet-101 architecture trained on JFT. The structures generated by MorphNet when targeting FLOPs (center, with 40% fewer FLOPs) or model size (right, with 43% fewer weights) are dramatically different. When optimizing for computation cost, higher-resolution neurons in the lower layers of the network tend to be pruned more than lower-resolution neurons in the upper layers. When targeting smaller model size, the pruning tradeoff is the opposite.
Targeted Regularization by MorphNet. Rectangle width is proportional to the number of channels in the layer. The purple bar at the bottom is the input layer. Left: Baseline network used as input to MorphNet. Center: Output applying FLOP regularizer. Right: Output applying size regularizer.
  • Topology Morphing. As MorphNet learns the number of neurons per layer, the algorithm could encounter a special case of sparsifying all the neurons in a layer. When a layer has 0 neurons, this effectively changes the topology of the network by cutting the affected branch from the network.
  • Scalability. MorphNet learns the new structure in a single training run and is a great approach when your training budget is limited. MorphNet can also be applied directly to expensive networks and datasets.
  • Portability. MorphNet produces networks that are “portable” in the sense that they are intended to be retrained from scratch and the weights are not tied to the architecture learning procedure. You don’t have to worry about copying checkpoints or following special training recipes. Simply train your new network as you normally would.
MorphNet applied to Inception V2 on ImageNet. Applying the flop regularizer alone (blue) improves the performance relative to baseline (red) by 11-15%. A full cycle, including both the regularizer and width multiplier, yields an increase in accuracy for the same cost (“x1”; purple), with continued improvement from a second cycle (“x2”; cyan).

“As a demonstration, we applied MorphNet to Inception V2 trained on ImageNet by targeting FLOPs. The baseline approach is to use a width multiplier to trade off accuracy and FLOPs by uniformly scaling down the number of outputs for each convolution (red). The MorphNet approach targets FLOPs directly and produces a better trade-off curve when shrinking the model (blue). In this case, FLOP cost is reduced 11% to 15% with the same accuracy as compared to the baseline,” write the researchers.

They conclude with, “We’ve applied MorphNet to several production-scale image processing models at Google. Using MorphNet resulted in significant reduction in model-size/FLOPs with little to no loss in quality. We invite you to try MorphNet—the open source TensorFlow implementation can be found here, and you can also read the MorphNet paper for more details.”

Link to Google blog (MorphNet: Towards Faster and Smaller Neural Networks): https://ai.googleblog.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm bulk wafer. With ~50 billion transistors, the chip will enab Read more…

Supercomputer-Powered CRISPR Simulation Lights Path to Better DNA Editing

May 5, 2021

CRISPR-Cas9 – mostly just known as CRISPR – is a powerful genome editing tool that uses an enzyme (Cas9) to slice off sections of DNA and a guide RNA to repair and modify the DNA as desired, opening the door for cure Read more…

LRZ Announces New Phase of SuperMUC-NG Supercomputer with Intel’s ‘Ponte Vecchio’ GPU

May 5, 2021

At the Leibniz Supercomputing Centre (LRZ) in München, Germany – one of the constituent centers of the Gauss Centre for Supercomputing (GCS) – the SuperMUC-NG system has stood tall for several years, placing 15th on Read more…

HPC Simulations Show How Antibodies Quash SARS-CoV-2

May 5, 2021

Following more than a year of rapid-fire research and pharmaceutical development, nearly a billion COVID-19 vaccine doses have been administered around the world, with many of those vaccines proving remarkably effective Read more…

Crystal Ball Gazing at Nvidia: R&D Chief Bill Dally Talks Targets and Approach

May 4, 2021

There’s no quibbling with Nvidia’s success. Entrenched atop the GPU market, Nvidia has ridden its own inventiveness and growing demand for accelerated computing to meet the needs of HPC and AI. Recently it embarked on an ambitious expansion by acquiring Mellanox (interconnect)... Read more…

AWS Solution Channel

FLYING WHALES runs CFD workloads 15 times faster on AWS

FLYING WHALES is a French startup that is developing a 60-ton payload cargo airship for the heavy lift and outsize cargo market. The project was born out of France’s ambition to provide efficient, environmentally friendly transportation for collecting wood in remote areas. Read more…

2021 Winter Classic – Coaches Chat

May 4, 2021

The Winter Classic Invitational Student Cluster Competition raged for all last week and now we’re into the week of judging interviews. Time has been flying. So as we wait for results, let’s dive a bit deeper into t Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

LRZ Announces New Phase of SuperMUC-NG Supercomputer with Intel’s ‘Ponte Vecchio’ GPU

May 5, 2021

At the Leibniz Supercomputing Centre (LRZ) in München, Germany – one of the constituent centers of the Gauss Centre for Supercomputing (GCS) – the SuperMUC Read more…

Crystal Ball Gazing at Nvidia: R&D Chief Bill Dally Talks Targets and Approach

May 4, 2021

There’s no quibbling with Nvidia’s success. Entrenched atop the GPU market, Nvidia has ridden its own inventiveness and growing demand for accelerated computing to meet the needs of HPC and AI. Recently it embarked on an ambitious expansion by acquiring Mellanox (interconnect)... Read more…

Intel Invests $3.5 Billion in New Mexico Fab to Focus on Foveros Packaging Technology

May 3, 2021

Intel announced it is investing $3.5 billion in its Rio Rancho, New Mexico, facility to support its advanced 3D manufacturing and packaging technology, Foveros. Read more…

Supercomputer Research Shows Standard Model May Withstand Muon Discrepancy

May 3, 2021

Big news recently struck the physics world: researchers at the Fermi National Accelerator Laboratory (FNAL), in the midst of their Muon g-2 experiment, publishe Read more…

NWChemEx: Computational Chemistry Code for the Exascale Era

April 29, 2021

A team working on biofuel research is rewriting the decades-old NWChem software program for the exascale era. The new software, NWChemEx, will enable computatio Read more…

HPE Will Build Singapore’s New National Supercomputer

April 28, 2021

More than two years ago, Singapore’s National Supercomputing Centre (NSCC) announced a $200 million SGD (~$151 million USD) investment to boost its supercomputing power by an order of magnitude. Today, those plans come closer to fruition with the announcement that Hewlett Packard Enterprise (HPE) has been awarded... Read more…

Arm Details Neoverse V1, N2 Platforms with New Mesh Interconnect, Advances Partner Ecosystem

April 27, 2021

Chip designer Arm Holdings is sharing details about its Neoverse V1 and N2 cores, introducing its new CMN-700 interconnect, and showcasing its partners' plans t Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Leading Solution Providers

Contributors

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire