Cray, AMD to Extend DOE’s Exascale Frontier

By Tiffany Trader

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Oak Ridge National Laboratory has selected American HPC company Cray–and its technology partner AMD–to provide the lab with its first exascale supercomputer for 2021 deployment.

The $600 million award marks the first system announcement to come out of the second CORAL (Collaboration of Oak Ridge, Argonne and Livermore) procurement process (CORAL-2). Poised to deliver “greater than 1.5 exaflops of HPC and AI processing performance,” Frontier (ORNL-5) will be based on Cray’s new Shasta architecture and Slingshot interconnect and will feature future-generation AMD Epyc CPUs and Radeon Instinct GPUs.

In a media briefing ahead of today’s announcement at Oak Ridge, the partners revealed that Frontier will span more than 100 Shasta supercomputer cabinets, each supporting 300 kilowatts of computing. Single-socket nodes will consist of one CPU and four GPUs, connected by AMD’s custom high bandwidth, low latency coherent Infinity fabric.

Oak Ridge Director Thomas Zacharia indicated that 40 MW of power, the maximum power draw set out in the CORAL-2 RFP, would be available for Frontier.

“Cray’s Slingshot system interconnect ties together this massive supercomputer and a new system software stack fuses the best of high performance computing and cloud capabilities,” said Cray CEO Pete Ungaro. “We worked together with AMD to design a new high density heterogeneous computing blade for Shasta and new programming environment for this new CPU-GPU node.”

Frontier will use a custom AMD Epyc processor based on a future generation of AMD’s Zen cores (beyond Rome and Milan). “[The future-gen Epycs] will have additional instructions in the microarchitecture as well as in the architecture itself for both optimization of AI as well as supercomputing workloads,” said AMD CEO Lisa Su, adding that the new Radeon Instinct GPU incorporates “extensive optimization for the AI and the computing performance, [with] mixed-precision operations for optimum deep learning performance, and high bandwidth memory for the best latency.”

The CPU and GPUs will be linked by AMD’s new coherent Infinity fabric and each GPU will be able to talk directly to the Slingshot network, enabling each node “to get the optimum performance for both supercomputing as well as AI,” said Su. All these components were designed for Frontier but will be available to enterprise applications after the system debuts, according to AMD.

Frontier marks a return for Cray and AMD to Oak Ridge, home to another Cray-AMD system, Titan. Benchmarked at 17.6 Linpack petaflops, Titan was the number one system in the world when it debuted (as an upgrade to Jaguar) in 2012. With Titan set to be decommissioned on August 1, 2019, and Frontier scheduled to be deployed in the back half of 2021 and accepted in 2022, Oak Ridge won’t be without a Cray-AMD machine for too long. While Titan used AMD (Opteron) CPUs and Nvidia (K20X) GPUS, Frontier will rely on AMD for all its in-node processing elements.

Frontier is Oak Ridge’s third machine to use a heterogeneous design. In addition to the aforementioned Titan, Oak Ridge is of course home to Summit, which became the world’s fastest supercomputer in June 2018. Its 143.5 GPU-accelerated Linpack petaflops are owed to 9,216 Power9 22-core CPUs and 27,648 Nvidia Tesla V100 GPUs.

“Since Titan, Oak Ridge has pioneered this idea of having GPU accelerators along with CPUs,” said Zacharia. “Frontier will be the third generation of supercomputing system built around this architecture and it will be the second generation AI machine.”

Frontier will be used for future application simulations for quantum computers, nuclear energy systems, fusion reactors, and precision medicines, said Zacharia, adding “Frontier finally gets us to the point where we can actually design new materials.”

“We are approaching a revolution in how we can design and analyze materials,” said Tom Evans, Oak Ridge National Laboratory technical lead for the Energy Applications Focus Area, Exascale Computing Project. “We can look and carefully characterize the electronic structure of fairly simple atoms and very simple molecules right now. But with exascale computing on Frontier, we’re trying to stretch that to molecules that consist of thousands of atoms. The more we understand about the electronic structure, the more we’re able to actually manufacture and use exotic materials for things like very small, high tensile strength materials and buildings to make them more energy efficient. At the end of the day, everything in some sense comes down to materials.”
AMD’s Forrest Norrod and Cray’s Pete Ungaro on stage at AMD’s Next Horizon event in November 2018.

In terms of number-one system bragging rights, the DOE has previously stated, and recently confirmed, that Aurora (aka Aurora21, the revised CORAL-1 system that Intel is contracted to deliver to Argonne) is on track to be the United States’, and possibly the world’s, first exascale system in 2021; and since that messaging has not changed, we believe it is the intention of the DOE to deliver on that goal. However, even if it is the case that Intel keeps to its timeline and Aurora is deployed and benchmarked first, Frontier is slated to be stood up on a very similar timeline and according to publicly stated performance goals will provide roughly 50 percent more flops capability.

Asked to comment on the “competitive” timelines for Frontier and Aurora, Zacharia said he could only comment on Frontier.

“I don’t know all the details of Aurora procurement because that information has not been publicly released, but we do know that Frontier will be the largest system by far that the DOE has procured,” he said.

“We know that Oak Ridge has experience with Summit and Titan previously in using CPU-GPU systems. We also know that the pre-exascale system that the scientific community is using today to develop all their applications and system software is on our system Summit, which is the largest machine available to anybody…. If there is any competition between the labs, it’s just competition for ideas, which is what scientists should do, but otherwise this is truly a DOE lab system effort to ensure the United States maintains the forefront of this important technology, not only because it drives technology innovation in the IT computing space but it also drives economic competition and creates jobs.”

Zacharia further cited that the goals for Frontier are aligned and consistent with the White House AI initiative as well as the National Council on American Workers, which is creating new jobs using AI and scientific computing in manufacturing and other spaces.

As for that $600-million-plus price tag, it is “by far the most expensive single machine that [the DOE has] ever procured,” said Zacharia. It’s also Cray’s largest contract ever.

The total amount includes the system build contract for “over $500 million,” as well as the development contract for “over $100 million” that will, according to Ungaro, be used to develop some of the core technologies for the machine, as well as a new programming environment that will enhance GPU programmability via extensions for Radeon Open Compute Platform (ROCm).

“The Cray Programming Environment (Cray PE)…will see a number of enhancements for increased functionality and scale,” said Cray. “This will start with Cray working with AMD to enhance these tools for optimized GPU scaling with extensions for Radeon Open Compute Platform (ROCm). These software enhancements will leverage low-level integrations of AMD ROCmRDMA technology with Cray Slingshot to enable direct communication between the Slingshot NIC to read and write data directly to GPU memory for higher application performance.”

To support the converged use of analytics, AI, and HPC at extreme scale, “Cray PE will be integrated with a full machine learning software stack with support for the most popular tools and frameworks.”

Shasta cabinet detail

Frontier marks Cray’s third major contract award for the Shasta architecture and Slingshot interconnect. Previous awards were for the National Energy Research Scientific Computing Center’s NERSC-9 pre-exascale Perlmutter system (with partners AMD and Nvidia) and the Argonne National Laboratory’s Aurora exascale system (with Intel as the prime).

Frontier is the first CORAL-2 award, announced nearly 13 months after the RFP was released. As laid out in the program’s RFP, CORAL-2 seeks to fund up to three exascale-class systems: Frontier at Oak Ridge, El Capitan at Livermore and a potential third system at Argonne if the lab chooses to make an award under the RFP and if funding is available. Like the original CORAL program, which kicked off in 2012, CORAL-2 has a mandate to field architecturally diverse machines in a way that manages risk during a period of rapid technological evolution. The stipulation indicates that “the systems residing at or planned to reside at ORNL and ANL must be diverse from one another,” however the program allows Oak Ridge and Livermore labs to employ the same architecture if they choose to do so, as in the case of Summit and Sierra, which employ very similar IBM-Nvidia architectures.

The CORAL-2 effort is part of the U.S. Exascale Computing Initiative. The ECI has two components: one is the hardware delivery and the other is application readiness. The latter is the domain of the Exascale Computing Project (see HPCwire‘s recent coverage to read about the latest progress), which is investing $1.7 billion to ensure there’s an exascale-ready software ecosystem to get the most from exascale hardware when it arrives.

“ECP Software Technology is excited to be a part of preparing the software stack for Frontier,” said Sandia’s Mike Heroux, director of software technology for the Exascale Computing Project. “We are already on our way, using Summit and Sierra as launching pads. Working with [Oak Ridge Leadership Computing Facility], Cray, and AMD, we look forward to providing the programming environments and tools, and math, data and visualization libraries that will unlock the potential of Frontier for producing the countless scientific achievements we expect from such a powerful system. We are privileged to be part of the effort.”

ORNL’s Center for Accelerated Application Readiness is accepting proposals from scientists to prepare their codes to run on Frontier. Check with the Frontier website for additional information.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qubits on an H1 system to simulate an iron catalyst's low ener Read more…

Diversity Hiring Maximizes Everyone’s Success in STEM and Beyond

September 12, 2024

Despite overwhelming evidence, some companies remain surprised by this simple revelation: Diverse workforces and leadership teams are good for business. Companies that cultivate diverse hiring practices and maintain a di Read more…

GenAI: It’s Not the GPUs, It’s the Storage

September 12, 2024

A recent news release from Data storage company WEKA and S&P Global Market Intelligence unveiled the findings of their second annual Global Trends in AI report. The global study, conducted by S&P Global Market In Read more…

Argonne’s HPC/AI User Forum Wrap Up

September 11, 2024

As fans of this publication will already know, AI is everywhere. We hear about it in the news, at work, and in our daily lives. It’s such a revolutionary technology that even established events focusing on HPC specific Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be natively integrated into four of the world's most advanced qu Read more…

Computing-Driven Medicine: Sleeping Better with HPC

September 10, 2024

As a senior undergraduate student at Fisk University in Nashville, Tenn., Ifrah Khurram's calculus professor, Dr. Sanjukta Hota, encouraged her to apply for the Sustainable Research Pathways Program (SRP). SRP was create Read more…

GenAI: It’s Not the GPUs, It’s the Storage

September 12, 2024

A recent news release from Data storage company WEKA and S&P Global Market Intelligence unveiled the findings of their second annual Global Trends in AI rep Read more…

Shutterstock 793611091

Argonne’s HPC/AI User Forum Wrap Up

September 11, 2024

As fans of this publication will already know, AI is everywhere. We hear about it in the news, at work, and in our daily lives. It’s such a revolutionary tech Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be n Read more…

AWS’s High-performance Computing Unit Has a New Boss

September 10, 2024

Amazon Web Services (AWS) has a new leader to run its high-performance computing GTM operations. Thierry Pellegrino, who is well-known in the HPC community, has Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, in Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Shutterstock 1897494979

What’s New with Chapel? Nine Questions for the Development Team

September 4, 2024

HPC news headlines often highlight the latest hardware speeds and feeds. While advances on the hardware front are important, improving the ability to write soft Read more…

Critics Slam Government on Compute Speeds in Regulations

September 3, 2024

Critics are accusing the U.S. and state governments of overreaching by including limits on compute speeds in regulations and laws, which they claim will limit i Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Leading Solution Providers

Contributors

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently Read more…

Department of Justice Begins Antitrust Probe into Nvidia

August 9, 2024

After months of skyrocketing stock prices and unhinged optimism, Nvidia has run into a few snags – a  design flaw in one of its new chips and an antitrust pr Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire