Cray, AMD to Extend DOE’s Exascale Frontier

By Tiffany Trader

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Oak Ridge National Laboratory has selected American HPC company Cray–and its technology partner AMD–to provide the lab with its first exascale supercomputer for 2021 deployment.

The $600 million award marks the first system announcement to come out of the second CORAL (Collaboration of Oak Ridge, Argonne and Livermore) procurement process (CORAL-2). Poised to deliver “greater than 1.5 exaflops of HPC and AI processing performance,” Frontier (ORNL-5) will be based on Cray’s new Shasta architecture and Slingshot interconnect and will feature future-generation AMD Epyc CPUs and Radeon Instinct GPUs.

In a media briefing ahead of today’s announcement at Oak Ridge, the partners revealed that Frontier will span more than 100 Shasta supercomputer cabinets, each supporting 300 kilowatts of computing. Single-socket nodes will consist of one CPU and four GPUs, connected by AMD’s custom high bandwidth, low latency coherent Infinity fabric.

Oak Ridge Director Thomas Zacharia indicated that 40 MW of power, the maximum power draw set out in the CORAL-2 RFP, would be available for Frontier.

“Cray’s Slingshot system interconnect ties together this massive supercomputer and a new system software stack fuses the best of high performance computing and cloud capabilities,” said Cray CEO Pete Ungaro. “We worked together with AMD to design a new high density heterogeneous computing blade for Shasta and new programming environment for this new CPU-GPU node.”

Frontier will use a custom AMD Epyc processor based on a future generation of AMD’s Zen cores (beyond Rome and Milan). “[The future-gen Epycs] will have additional instructions in the microarchitecture as well as in the architecture itself for both optimization of AI as well as supercomputing workloads,” said AMD CEO Lisa Su, adding that the new Radeon Instinct GPU incorporates “extensive optimization for the AI and the computing performance, [with] mixed-precision operations for optimum deep learning performance, and high bandwidth memory for the best latency.”

The CPU and GPUs will be linked by AMD’s new coherent Infinity fabric and each GPU will be able to talk directly to the Slingshot network, enabling each node “to get the optimum performance for both supercomputing as well as AI,” said Su. All these components were designed for Frontier but will be available to enterprise applications after the system debuts, according to AMD.

Frontier marks a return for Cray and AMD to Oak Ridge, home to another Cray-AMD system, Titan. Benchmarked at 17.6 Linpack petaflops, Titan was the number one system in the world when it debuted (as an upgrade to Jaguar) in 2012. With Titan set to be decommissioned on August 1, 2019, and Frontier scheduled to be deployed in the back half of 2021 and accepted in 2022, Oak Ridge won’t be without a Cray-AMD machine for too long. While Titan used AMD (Opteron) CPUs and Nvidia (K20X) GPUS, Frontier will rely on AMD for all its in-node processing elements.

Frontier is Oak Ridge’s third machine to use a heterogeneous design. In addition to the aforementioned Titan, Oak Ridge is of course home to Summit, which became the world’s fastest supercomputer in June 2018. Its 143.5 GPU-accelerated Linpack petaflops are owed to 9,216 Power9 22-core CPUs and 27,648 Nvidia Tesla V100 GPUs.

“Since Titan, Oak Ridge has pioneered this idea of having GPU accelerators along with CPUs,” said Zacharia. “Frontier will be the third generation of supercomputing system built around this architecture and it will be the second generation AI machine.”

Frontier will be used for future application simulations for quantum computers, nuclear energy systems, fusion reactors, and precision medicines, said Zacharia, adding “Frontier finally gets us to the point where we can actually design new materials.”

“We are approaching a revolution in how we can design and analyze materials,” said Tom Evans, Oak Ridge National Laboratory technical lead for the Energy Applications Focus Area, Exascale Computing Project. “We can look and carefully characterize the electronic structure of fairly simple atoms and very simple molecules right now. But with exascale computing on Frontier, we’re trying to stretch that to molecules that consist of thousands of atoms. The more we understand about the electronic structure, the more we’re able to actually manufacture and use exotic materials for things like very small, high tensile strength materials and buildings to make them more energy efficient. At the end of the day, everything in some sense comes down to materials.”
AMD’s Forrest Norrod and Cray’s Pete Ungaro on stage at AMD’s Next Horizon event in November 2018.

In terms of number-one system bragging rights, the DOE has previously stated, and recently confirmed, that Aurora (aka Aurora21, the revised CORAL-1 system that Intel is contracted to deliver to Argonne) is on track to be the United States’, and possibly the world’s, first exascale system in 2021; and since that messaging has not changed, we believe it is the intention of the DOE to deliver on that goal. However, even if it is the case that Intel keeps to its timeline and Aurora is deployed and benchmarked first, Frontier is slated to be stood up on a very similar timeline and according to publicly stated performance goals will provide roughly 50 percent more flops capability.

Asked to comment on the “competitive” timelines for Frontier and Aurora, Zacharia said he could only comment on Frontier.

“I don’t know all the details of Aurora procurement because that information has not been publicly released, but we do know that Frontier will be the largest system by far that the DOE has procured,” he said.

“We know that Oak Ridge has experience with Summit and Titan previously in using CPU-GPU systems. We also know that the pre-exascale system that the scientific community is using today to develop all their applications and system software is on our system Summit, which is the largest machine available to anybody…. If there is any competition between the labs, it’s just competition for ideas, which is what scientists should do, but otherwise this is truly a DOE lab system effort to ensure the United States maintains the forefront of this important technology, not only because it drives technology innovation in the IT computing space but it also drives economic competition and creates jobs.”

Zacharia further cited that the goals for Frontier are aligned and consistent with the White House AI initiative as well as the National Council on American Workers, which is creating new jobs using AI and scientific computing in manufacturing and other spaces.

As for that $600-million-plus price tag, it is “by far the most expensive single machine that [the DOE has] ever procured,” said Zacharia. It’s also Cray’s largest contract ever.

The total amount includes the system build contract for “over $500 million,” as well as the development contract for “over $100 million” that will, according to Ungaro, be used to develop some of the core technologies for the machine, as well as a new programming environment that will enhance GPU programmability via extensions for Radeon Open Compute Platform (ROCm).

“The Cray Programming Environment (Cray PE)…will see a number of enhancements for increased functionality and scale,” said Cray. “This will start with Cray working with AMD to enhance these tools for optimized GPU scaling with extensions for Radeon Open Compute Platform (ROCm). These software enhancements will leverage low-level integrations of AMD ROCmRDMA technology with Cray Slingshot to enable direct communication between the Slingshot NIC to read and write data directly to GPU memory for higher application performance.”

To support the converged use of analytics, AI, and HPC at extreme scale, “Cray PE will be integrated with a full machine learning software stack with support for the most popular tools and frameworks.”

Shasta cabinet detail

Frontier marks Cray’s third major contract award for the Shasta architecture and Slingshot interconnect. Previous awards were for the National Energy Research Scientific Computing Center’s NERSC-9 pre-exascale Perlmutter system (with partners AMD and Nvidia) and the Argonne National Laboratory’s Aurora exascale system (with Intel as the prime).

Frontier is the first CORAL-2 award, announced nearly 13 months after the RFP was released. As laid out in the program’s RFP, CORAL-2 seeks to fund up to three exascale-class systems: Frontier at Oak Ridge, El Capitan at Livermore and a potential third system at Argonne if the lab chooses to make an award under the RFP and if funding is available. Like the original CORAL program, which kicked off in 2012, CORAL-2 has a mandate to field architecturally diverse machines in a way that manages risk during a period of rapid technological evolution. The stipulation indicates that “the systems residing at or planned to reside at ORNL and ANL must be diverse from one another,” however the program allows Oak Ridge and Livermore labs to employ the same architecture if they choose to do so, as in the case of Summit and Sierra, which employ very similar IBM-Nvidia architectures.

The CORAL-2 effort is part of the U.S. Exascale Computing Initiative. The ECI has two components: one is the hardware delivery and the other is application readiness. The latter is the domain of the Exascale Computing Project (see HPCwire‘s recent coverage to read about the latest progress), which is investing $1.7 billion to ensure there’s an exascale-ready software ecosystem to get the most from exascale hardware when it arrives.

“ECP Software Technology is excited to be a part of preparing the software stack for Frontier,” said Sandia’s Mike Heroux, director of software technology for the Exascale Computing Project. “We are already on our way, using Summit and Sierra as launching pads. Working with [Oak Ridge Leadership Computing Facility], Cray, and AMD, we look forward to providing the programming environments and tools, and math, data and visualization libraries that will unlock the potential of Frontier for producing the countless scientific achievements we expect from such a powerful system. We are privileged to be part of the effort.”

ORNL’s Center for Accelerated Application Readiness is accepting proposals from scientists to prepare their codes to run on Frontier. Check with the Frontier website for additional information.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community and their demand for high compute power in low precision for Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implement a neural network (NN). Their novel architecture, reporte Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing the pinnacle of HPE's HPC portfolio. After announcing its i Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the increasingly important goals of data best practices and work Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated, analysts said the acquisition would cement Nvidia’s stat Read more…

By George Leopold

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Summer Reading: Here’s a Quantum Advantage You Can Bet On!

August 3, 2020

While quantum computing researchers today vigorously chase a demonstration of a quantum advantage – an application which when run on a quantum computer provides sufficient advantage to warrant switching from a classica Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

PEARC20 Plenary Introduces Five Upcoming NSF-Funded HPC Systems

July 30, 2020

Five new HPC systems—three National Science Foundation-funded “Capacity” systems and two “Innovative Prototype/Testbed” systems—will be coming onlin Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Dominates Latest MLPerf Training Benchmark Results

July 29, 2020

MLPerf.org released its third round of training benchmark (v0.7) results today and Nvidia again dominated, claiming 16 new records. Meanwhile, Google provided e Read more…

By John Russell

$39 Billion Worldwide HPC Market Faces 3.7% COVID-related Drop in 2020

July 29, 2020

Global HPC market revenue reached $39 billion in 2019, growing a healthy 8.2 percent over 2018, according to the latest analysis from Intersect360 Research. A 3 Read more…

By Tiffany Trader

Agenting Change: PEARC20 Keynote Encourages Cultural Change to Make Tech Better, More Diverse

July 29, 2020

The tech world will need to become more diverse if it is to thrive and survive, said Cherri Pancake, director of the Northwest Alliance for Computational Resear Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This