Cray, AMD to Extend DOE’s Exascale Frontier

By Tiffany Trader

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Oak Ridge National Laboratory has selected American HPC company Cray–and its technology partner AMD–to provide the lab with its first exascale supercomputer for 2021 deployment.

The $600 million award marks the first system announcement to come out of the second CORAL (Collaboration of Oak Ridge, Argonne and Livermore) procurement process (CORAL-2). Poised to deliver “greater than 1.5 exaflops of HPC and AI processing performance,” Frontier (ORNL-5) will be based on Cray’s new Shasta architecture and Slingshot interconnect and will feature future-generation AMD Epyc CPUs and Radeon Instinct GPUs.

In a media briefing ahead of today’s announcement at Oak Ridge, the partners revealed that Frontier will span more than 100 Shasta supercomputer cabinets, each supporting 300 kilowatts of computing. Single-socket nodes will consist of one CPU and four GPUs, connected by AMD’s custom high bandwidth, low latency coherent Infinity fabric.

Oak Ridge Director Thomas Zacharia indicated that 40 MW of power, the maximum power draw set out in the CORAL-2 RFP, would be available for Frontier.

“Cray’s Slingshot system interconnect ties together this massive supercomputer and a new system software stack fuses the best of high performance computing and cloud capabilities,” said Cray CEO Pete Ungaro. “We worked together with AMD to design a new high density heterogeneous computing blade for Shasta and new programming environment for this new CPU-GPU node.”

Frontier will use a custom AMD Epyc processor based on a future generation of AMD’s Zen cores (beyond Rome and Milan). “[The future-gen Epycs] will have additional instructions in the microarchitecture as well as in the architecture itself for both optimization of AI as well as supercomputing workloads,” said AMD CEO Lisa Su, adding that the new Radeon Instinct GPU incorporates “extensive optimization for the AI and the computing performance, [with] mixed-precision operations for optimum deep learning performance, and high bandwidth memory for the best latency.”

The CPU and GPUs will be linked by AMD’s new coherent Infinity fabric and each GPU will be able to talk directly to the Slingshot network, enabling each node “to get the optimum performance for both supercomputing as well as AI,” said Su. All these components were designed for Frontier but will be available to enterprise applications after the system debuts, according to AMD.

Frontier marks a return for Cray and AMD to Oak Ridge, home to another Cray-AMD system, Titan. Benchmarked at 17.6 Linpack petaflops, Titan was the number one system in the world when it debuted (as an upgrade to Jaguar) in 2012. With Titan set to be decommissioned on August 1, 2019, and Frontier scheduled to be deployed in the back half of 2021 and accepted in 2022, Oak Ridge won’t be without a Cray-AMD machine for too long. While Titan used AMD (Opteron) CPUs and Nvidia (K20X) GPUS, Frontier will rely on AMD for all its in-node processing elements.

Frontier is Oak Ridge’s third machine to use a heterogeneous design. In addition to the aforementioned Titan, Oak Ridge is of course home to Summit, which became the world’s fastest supercomputer in June 2018. Its 143.5 GPU-accelerated Linpack petaflops are owed to 9,216 Power9 22-core CPUs and 27,648 Nvidia Tesla V100 GPUs.

“Since Titan, Oak Ridge has pioneered this idea of having GPU accelerators along with CPUs,” said Zacharia. “Frontier will be the third generation of supercomputing system built around this architecture and it will be the second generation AI machine.”

Frontier will be used for future application simulations for quantum computers, nuclear energy systems, fusion reactors, and precision medicines, said Zacharia, adding “Frontier finally gets us to the point where we can actually design new materials.”

“We are approaching a revolution in how we can design and analyze materials,” said Tom Evans, Oak Ridge National Laboratory technical lead for the Energy Applications Focus Area, Exascale Computing Project. “We can look and carefully characterize the electronic structure of fairly simple atoms and very simple molecules right now. But with exascale computing on Frontier, we’re trying to stretch that to molecules that consist of thousands of atoms. The more we understand about the electronic structure, the more we’re able to actually manufacture and use exotic materials for things like very small, high tensile strength materials and buildings to make them more energy efficient. At the end of the day, everything in some sense comes down to materials.”
AMD’s Forrest Norrod and Cray’s Pete Ungaro on stage at AMD’s Next Horizon event in November 2018.

In terms of number-one system bragging rights, the DOE has previously stated, and recently confirmed, that Aurora (aka Aurora21, the revised CORAL-1 system that Intel is contracted to deliver to Argonne) is on track to be the United States’, and possibly the world’s, first exascale system in 2021; and since that messaging has not changed, we believe it is the intention of the DOE to deliver on that goal. However, even if it is the case that Intel keeps to its timeline and Aurora is deployed and benchmarked first, Frontier is slated to be stood up on a very similar timeline and according to publicly stated performance goals will provide roughly 50 percent more flops capability.

Asked to comment on the “competitive” timelines for Frontier and Aurora, Zacharia said he could only comment on Frontier.

“I don’t know all the details of Aurora procurement because that information has not been publicly released, but we do know that Frontier will be the largest system by far that the DOE has procured,” he said.

“We know that Oak Ridge has experience with Summit and Titan previously in using CPU-GPU systems. We also know that the pre-exascale system that the scientific community is using today to develop all their applications and system software is on our system Summit, which is the largest machine available to anybody…. If there is any competition between the labs, it’s just competition for ideas, which is what scientists should do, but otherwise this is truly a DOE lab system effort to ensure the United States maintains the forefront of this important technology, not only because it drives technology innovation in the IT computing space but it also drives economic competition and creates jobs.”

Zacharia further cited that the goals for Frontier are aligned and consistent with the White House AI initiative as well as the National Council on American Workers, which is creating new jobs using AI and scientific computing in manufacturing and other spaces.

As for that $600-million-plus price tag, it is “by far the most expensive single machine that [the DOE has] ever procured,” said Zacharia. It’s also Cray’s largest contract ever.

The total amount includes the system build contract for “over $500 million,” as well as the development contract for “over $100 million” that will, according to Ungaro, be used to develop some of the core technologies for the machine, as well as a new programming environment that will enhance GPU programmability via extensions for Radeon Open Compute Platform (ROCm).

“The Cray Programming Environment (Cray PE)…will see a number of enhancements for increased functionality and scale,” said Cray. “This will start with Cray working with AMD to enhance these tools for optimized GPU scaling with extensions for Radeon Open Compute Platform (ROCm). These software enhancements will leverage low-level integrations of AMD ROCmRDMA technology with Cray Slingshot to enable direct communication between the Slingshot NIC to read and write data directly to GPU memory for higher application performance.”

To support the converged use of analytics, AI, and HPC at extreme scale, “Cray PE will be integrated with a full machine learning software stack with support for the most popular tools and frameworks.”

Shasta cabinet detail

Frontier marks Cray’s third major contract award for the Shasta architecture and Slingshot interconnect. Previous awards were for the National Energy Research Scientific Computing Center’s NERSC-9 pre-exascale Perlmutter system (with partners AMD and Nvidia) and the Argonne National Laboratory’s Aurora exascale system (with Intel as the prime).

Frontier is the first CORAL-2 award, announced nearly 13 months after the RFP was released. As laid out in the program’s RFP, CORAL-2 seeks to fund up to three exascale-class systems: Frontier at Oak Ridge, El Capitan at Livermore and a potential third system at Argonne if the lab chooses to make an award under the RFP and if funding is available. Like the original CORAL program, which kicked off in 2012, CORAL-2 has a mandate to field architecturally diverse machines in a way that manages risk during a period of rapid technological evolution. The stipulation indicates that “the systems residing at or planned to reside at ORNL and ANL must be diverse from one another,” however the program allows Oak Ridge and Livermore labs to employ the same architecture if they choose to do so, as in the case of Summit and Sierra, which employ very similar IBM-Nvidia architectures.

The CORAL-2 effort is part of the U.S. Exascale Computing Initiative. The ECI has two components: one is the hardware delivery and the other is application readiness. The latter is the domain of the Exascale Computing Project (see HPCwire‘s recent coverage to read about the latest progress), which is investing $1.7 billion to ensure there’s an exascale-ready software ecosystem to get the most from exascale hardware when it arrives.

“ECP Software Technology is excited to be a part of preparing the software stack for Frontier,” said Sandia’s Mike Heroux, director of software technology for the Exascale Computing Project. “We are already on our way, using Summit and Sierra as launching pads. Working with [Oak Ridge Leadership Computing Facility], Cray, and AMD, we look forward to providing the programming environments and tools, and math, data and visualization libraries that will unlock the potential of Frontier for producing the countless scientific achievements we expect from such a powerful system. We are privileged to be part of the effort.”

ORNL’s Center for Accelerated Application Readiness is accepting proposals from scientists to prepare their codes to run on Frontier. Check with the Frontier website for additional information.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced computing technologies for the AI and exascale era. "Over th Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has now encompassed CPUs offered by the leading public cloud serv Read more…

By Doug Black

Medical Imaging Gets an AI Boost

December 3, 2019

AI technologies incorporated into diagnostic imaging tools have proven useful in eliminating confirmation bias, often outperforming human clinicians who may bring their own prejudices. Another issue slowing progress is t Read more…

By George Leopold

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science itself. At SC19, Steve Squyres’ opening keynote recounting th Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

AI Needs Intelligent HPC infrastructure

Artificial Intelligence (AI) has revolutionized entire industries and enables humanity to solve some of the most daunting challenges. To accomplish this, it requires massive amounts of data from heterogeneous sources that is processed it new ways that differs significantly from HPC applications. Read more…

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

How the Gordon Bell Prize Winners Used Summit to Illuminate Transistors

November 22, 2019

At SC19, the Association for Computing Machinery (ACM) awarded the prestigious Gordon Bell Prize to the Swiss Federal Institute of Technology (ETH) Zurich. The Read more…

By Oliver Peckham

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This