Ten Great Reasons to Build the 1.5 Exaflops Frontier

By John Russell

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting benefits will ripple through society. Helping to ensure that happens is the non-trivial task of the U.S. Exscale Computing Project (ECP) whose mission is to foster development of the exascale-ready software ecosystem including science applications required. At today’s announcement of plans to build the $600 million, 1.5 exaflops Frontier supercomputer at Oak Ridge National Laboratory, organizers also presented a glimpse into some of the science Frontier may tackle.

Amitava-Bhattacharjee, Princeton Plasma Lab

Project organizers asked ten ECP project leaders to describe what they hoped to accomplish with Frontier’s exascale power. One of them is Amitava Bhattacharjee of the Princeton Plasma Physics Laboratory and PI for ECP’s WDMApp (Whole Device Modeling of Magnetically Confined Fusion Plasma).

He noted, “A whole-device computer model can offer insights about the plasma processes that go on in the fusion device and predictions regarding the performance and optimization of next-step experimental facilities. Using Frontier, we will be able to add new capabilities to the whole-device model, including the effects of the plasma boundary, the effects of fusion products, the influence of sources of heating, and the superimposed engineering structure that would make a fusion reactor operate as a unit.”

The goal of delivering safe, abundant, cheap energy from fusion is just one of many challenges in which exascale computing’s power may prove decisive. That’s the hope and expectation.

Presented below are quotes from nine more ECP PIs on their expectations for putting Frontier to use. (For details of the machine itself, whose construction is being led by partners Cray and AMD, see HPCwire’s article today, Cray, AMD to Extend DOE’s Exascale Frontier, written by Tiffany Trader.)

Additive Manufacturing. John Turner, ORNL and PI for ExaAM (Transformative Additive Manufacturing), ECP: “The thing that’s really attractive about Frontier is the powerful nodes. Having fewer powerful nodes with a very tightly integrated set of CPUs and GPUs at the node-level gives us the ability to distribute hundreds or thousands of microstructure and property calculations on one or a few nodes across the machine. With Frontier, we’re going to be able to predict the microstructure and properties of an additively manufactured part at much higher fidelity and in many more locations within a part than we are able to even with the world’s current fastest supercomputers.”

Materials Science. Danny Perez, Los Alamos National Laboratory and PI for EXAALT (Molecular Dynamics at Exascale for Materials Science), ECP: “Studying materials at exascale could have a significant impact on our world, because materials show up everywhere in the economy. Using a combination of advanced methods and scalable codes on Frontier, we’ll be able to perform simulations with potential millionfold increases in our time scales. We’ll also be able to do one-to-one comparisons with experiments and make better predictions about the evolution of these systems.”

Jacqueline Chen, Sandia National Laboratory

Combustion Efficiency. Jacqueline Chen, Sandia National Laboratories and PI for Combustion-Pele, ECP: “Combustion systems are projected to dominate the energy marketplace for decades to come. One engine concept—a low-temperature, reactivity-controlled, compression ignition engine— has the potential to deliver groundbreaking efficiencies of up to 60 percent while reducing emissions. On Frontier, we anticipate using high-fidelity simulations with machine learning and A.I. to model the underlying processes of this promising engine.”

Cosmology. Salman Habib, Argonne National Laboratory and PI for ExaSky (Computing the Sky at Extreme Scales), ECP: “Exascale will enable cosmology simulations large enough to model the distribution of billions of galaxies but also fine-grained enough to compare to a range of ground- and satellite-based observations, such as cosmic microwave background measurements and radio, optical, and xray data sets. At the same time, Frontier’s AI-oriented technology will enable us to analyze data from simulations in ways we simply can’t today.”

Software Technology. Mike Heroux, Sandia National Laboratories and Director, Software Technology, ECP: “ECP Software Technology is excited to be a part of preparing the software stack for Frontier. We are already on our way, using Summit and Sierra as launching pads. Working with OLCF, Cray, and AMD, we look forward to providing the programming environments and tools, and math, data and visualization libraries that will unlock the potential of Frontier for producing the countless scientific achievements we expect from such a powerful system. We are privileged to be part of the effort.”

Andreas Kronfield, Fermilab

Quantum Physics. Andreas Kronfeld, Fermilab and PI for Lattice QCD, ECP: “Exascale computing will be essential to precisely illuminating phenomena that emerge from neutrino physics experiments and maintaining the superb cross talk that has existed between the quantitative and the qualitative sides of discoveries in particle and nuclear physics. We anticipate that Frontier will provide the compute power and, just as important, the architecture for computation we must have to do our complicated, difficult calculations.”

Energy Application. Tom Evans, ORNL and Technical Lead for the Energy Applications Focus Area, ECP: “We are approaching a revolution in how we can design and analyze materials. We can look and carefully characterize the electronic structure of fairly simple atoms and very simple molecules right now. But with exascale computing on Frontier, we’re trying to stretch that to molecules that consist of thousands of atoms. The more we understand about the electronic structure, the more we’re able to actually manufacture and use exotic materials for things like very small, high tensile strength materials and buildings to make them more energy efficient. At the end of the day, everything in some sense comes down to materials.”

Grand Challenges. Andrew Siegel, Argonne National Laboratory and Director of Application Development Director, ECP: “At the inception of the ECP project we asked researchers to imagine new frontiers in science and engineering enabled by exascale computing. With Frontier, we have the opportunity now to fully realize our original vision, solving grand challenge problems that lead to breakthroughs in areas of energy generation, materials design, earth and space sciences, and related fields of physics and engineering.”

Laser Research. Amedeo Perazzo, SLAC National Accelerator Laboratory and PI for ExaFEL, ECP: “Free-electron X-ray laser facilities, such as the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, produce ultrafast pulses from which scientists take stop- action pictures of moving atoms and molecules for research in physics, chemistry, and biology. For example, LCLS will be able to reconstruct biological structures in unprecedented atomic detail under physiological conditions. We foresee that access to Frontier will enable the LCLS users to achieve not only higher resolution and significantly deeper scientific insight than are possible today but also a dramatically increased image reconstruction rate for the delivery of information in minutes rather than weeks.”

Visit the Frontier website to read Q&As with these and other scientists conducting high impact research and preparing next-generation DOE applications for exascale.

There will of course be many more projects seeking and obtaining time on Frontier. Through its Center for Accelerated Application Readiness (CAAR), the OLCF will partner with simulation, data-intensive,and machine learning application teams consisting of application core developers and OLCF staff members. “CAAR partnership project proposals, accepted now through June 8, will be evaluated by a computational and scientific review conducted by the OLCF. In addition to gauging the scientific merit and acceleration plan of each proposal, the committee will strive to select a mix of computational algorithms and programming approaches representing a broad range of scientific disciplines,” reports ECP.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire