Ten Great Reasons to Build the 1.5 Exaflops Frontier

By John Russell

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting benefits will ripple through society. Helping to ensure that happens is the non-trivial task of the U.S. Exscale Computing Project (ECP) whose mission is to foster development of the exascale-ready software ecosystem including science applications required. At today’s announcement of plans to build the $600 million, 1.5 exaflops Frontier supercomputer at Oak Ridge National Laboratory, organizers also presented a glimpse into some of the science Frontier may tackle.

Amitava-Bhattacharjee, Princeton Plasma Lab

Project organizers asked ten ECP project leaders to describe what they hoped to accomplish with Frontier’s exascale power. One of them is Amitava Bhattacharjee of the Princeton Plasma Physics Laboratory and PI for ECP’s WDMApp (Whole Device Modeling of Magnetically Confined Fusion Plasma).

He noted, “A whole-device computer model can offer insights about the plasma processes that go on in the fusion device and predictions regarding the performance and optimization of next-step experimental facilities. Using Frontier, we will be able to add new capabilities to the whole-device model, including the effects of the plasma boundary, the effects of fusion products, the influence of sources of heating, and the superimposed engineering structure that would make a fusion reactor operate as a unit.”

The goal of delivering safe, abundant, cheap energy from fusion is just one of many challenges in which exascale computing’s power may prove decisive. That’s the hope and expectation.

Presented below are quotes from nine more ECP PIs on their expectations for putting Frontier to use. (For details of the machine itself, whose construction is being led by partners Cray and AMD, see HPCwire’s article today, Cray, AMD to Extend DOE’s Exascale Frontier, written by Tiffany Trader.)

Additive Manufacturing. John Turner, ORNL and PI for ExaAM (Transformative Additive Manufacturing), ECP: “The thing that’s really attractive about Frontier is the powerful nodes. Having fewer powerful nodes with a very tightly integrated set of CPUs and GPUs at the node-level gives us the ability to distribute hundreds or thousands of microstructure and property calculations on one or a few nodes across the machine. With Frontier, we’re going to be able to predict the microstructure and properties of an additively manufactured part at much higher fidelity and in many more locations within a part than we are able to even with the world’s current fastest supercomputers.”

Materials Science. Danny Perez, Los Alamos National Laboratory and PI for EXAALT (Molecular Dynamics at Exascale for Materials Science), ECP: “Studying materials at exascale could have a significant impact on our world, because materials show up everywhere in the economy. Using a combination of advanced methods and scalable codes on Frontier, we’ll be able to perform simulations with potential millionfold increases in our time scales. We’ll also be able to do one-to-one comparisons with experiments and make better predictions about the evolution of these systems.”

Jacqueline Chen, Sandia National Laboratory

Combustion Efficiency. Jacqueline Chen, Sandia National Laboratories and PI for Combustion-Pele, ECP: “Combustion systems are projected to dominate the energy marketplace for decades to come. One engine concept—a low-temperature, reactivity-controlled, compression ignition engine— has the potential to deliver groundbreaking efficiencies of up to 60 percent while reducing emissions. On Frontier, we anticipate using high-fidelity simulations with machine learning and A.I. to model the underlying processes of this promising engine.”

Cosmology. Salman Habib, Argonne National Laboratory and PI for ExaSky (Computing the Sky at Extreme Scales), ECP: “Exascale will enable cosmology simulations large enough to model the distribution of billions of galaxies but also fine-grained enough to compare to a range of ground- and satellite-based observations, such as cosmic microwave background measurements and radio, optical, and xray data sets. At the same time, Frontier’s AI-oriented technology will enable us to analyze data from simulations in ways we simply can’t today.”

Software Technology. Mike Heroux, Sandia National Laboratories and Director, Software Technology, ECP: “ECP Software Technology is excited to be a part of preparing the software stack for Frontier. We are already on our way, using Summit and Sierra as launching pads. Working with OLCF, Cray, and AMD, we look forward to providing the programming environments and tools, and math, data and visualization libraries that will unlock the potential of Frontier for producing the countless scientific achievements we expect from such a powerful system. We are privileged to be part of the effort.”

Andreas Kronfield, Fermilab

Quantum Physics. Andreas Kronfeld, Fermilab and PI for Lattice QCD, ECP: “Exascale computing will be essential to precisely illuminating phenomena that emerge from neutrino physics experiments and maintaining the superb cross talk that has existed between the quantitative and the qualitative sides of discoveries in particle and nuclear physics. We anticipate that Frontier will provide the compute power and, just as important, the architecture for computation we must have to do our complicated, difficult calculations.”

Energy Application. Tom Evans, ORNL and Technical Lead for the Energy Applications Focus Area, ECP: “We are approaching a revolution in how we can design and analyze materials. We can look and carefully characterize the electronic structure of fairly simple atoms and very simple molecules right now. But with exascale computing on Frontier, we’re trying to stretch that to molecules that consist of thousands of atoms. The more we understand about the electronic structure, the more we’re able to actually manufacture and use exotic materials for things like very small, high tensile strength materials and buildings to make them more energy efficient. At the end of the day, everything in some sense comes down to materials.”

Grand Challenges. Andrew Siegel, Argonne National Laboratory and Director of Application Development Director, ECP: “At the inception of the ECP project we asked researchers to imagine new frontiers in science and engineering enabled by exascale computing. With Frontier, we have the opportunity now to fully realize our original vision, solving grand challenge problems that lead to breakthroughs in areas of energy generation, materials design, earth and space sciences, and related fields of physics and engineering.”

Laser Research. Amedeo Perazzo, SLAC National Accelerator Laboratory and PI for ExaFEL, ECP: “Free-electron X-ray laser facilities, such as the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, produce ultrafast pulses from which scientists take stop- action pictures of moving atoms and molecules for research in physics, chemistry, and biology. For example, LCLS will be able to reconstruct biological structures in unprecedented atomic detail under physiological conditions. We foresee that access to Frontier will enable the LCLS users to achieve not only higher resolution and significantly deeper scientific insight than are possible today but also a dramatically increased image reconstruction rate for the delivery of information in minutes rather than weeks.”

Visit the Frontier website to read Q&As with these and other scientists conducting high impact research and preparing next-generation DOE applications for exascale.

There will of course be many more projects seeking and obtaining time on Frontier. Through its Center for Accelerated Application Readiness (CAAR), the OLCF will partner with simulation, data-intensive,and machine learning application teams consisting of application core developers and OLCF staff members. “CAAR partnership project proposals, accepted now through June 8, will be evaluated by a computational and scientific review conducted by the OLCF. In addition to gauging the scientific merit and acceleration plan of each proposal, the committee will strive to select a mix of computational algorithms and programming approaches representing a broad range of scientific disciplines,” reports ECP.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire