Quantum Upstart: IonQ Sets Sights on Challenging IBM, Rigetti, Others

By John Russell

June 5, 2019

Until now most of the buzz around quantum computing has been generated by folks already in the computer business – systems makers, chip makers, and big cloud providers. Their efforts have been dominated by semiconductor-based, superconducting approaches. The old saw “to a hammer all else looks like a nail” seems to fit here.

Now, a two-year-old start-up – IonQ – that’s pioneering trapped ion technology for quantum computing is jumping into the fray with some brash claims. IonQ reports there’s there’s less overhead required for error correction with its system, that entangling large numbers of qubits is much easier, and that the base technology is mundane, less costly, and compact. No exotic dilution refrigerators here. Indeed much of the approach is derived from decades old atomic clock technology.

Traction for trapped ion technology in the QC world is fairly recent. It was just a year ago NSF initiated a trapped ion quantum computing (STAQ) project. Late last month IonQ installed a new president and CEO, Peter Chapman, whose job is to accelerate commercial success; accomplishing that has eluded everyone in the commercial quantum space so far as the machines and needed ecosystem (tools, developers, breadth of quantum algorithms, etc.) remain in developmental stages. IonQ’s founding president and CEO, Christopher Monroe, is stepping into the chief scientist role, and indeed he is a pioneer in trapped ion technology and one of the authors of an influential 2016 paper[i]on the technology.

Earlier this week Chapman and Stewart Allen, the company COO, briefed HPCwire on IonQ’s technology and roll-out plans. Interestingly much of the conversation focused on hammering home their view that trapped ion technology is set to zoom past the semiconductor-based, superconducting approaches practiced by IBM, Google, and Rigetti Computing.

Based in College Park, MD, not far from the University of Maryland where Monroe did much of his work, IonQ has built three 11-qubit systems. Access to those machines is still “private and in beta stages” with broader access via the web coming, perhaps later this year. Notably, New Enterprise Associates, GV (formerly Google Ventures) and AWS are all investors. In fact, Chapman was director of engineering at Amazon Prime before joining Ion.

One big problem with quantum computers today is that they are noisy. Qubits, by and large, are delicate things that fall apart when disturbed by virtually anything (heat, vibration, stray electromagnetic influence, etc.). Building systems to eliminate those noises is an ongoing challenge, particularly for systems based on semiconductor-based, superconducting qubits. These noisy systems require daunting error correction approaches that have so far largely proved impractical. A second thorny problem is figuring out how to controllably entangle large numbers of qubits. Don’t forget that it is entanglement that gives quantum computing its real power.

Photo of IonQ’s ion trap chip with image of ions superimposed over it. Source: IonQ

Chapman argued trapped ion technology is vastly superior in handing these issues than semiconductor-based superconducting approaches. We haven’t heard as much about it, he says, because trapped ion technology grew up in a quieter community unlike the boisterous, jostling world of computer technology suppliers. With the fundamental work now completed, he argues trapped ion technology and IonQ in particular will quickly move to the forefront of quantum computing.

Here’s roughly how the trapped ion approach works: (Apologies for error; Monroe’s 2016 paper is actually terrific and an accessible reference.)

Ionized molecules with appropriate valence structure are used as the qubit registers. IonQ uses Ybions. A key strength here is the ions are essentially identical and reliable in their behavior. Outer electrons can be readily pumped into higher energy level and have a relatively long time before collapse. Depending on its state, the molecule represents a zero or a one. It is straightforward to generate and insert these ions into the ion trap, a “magnetic bottle” if you will, and hold them steady. Chapman use a mag-lev chip analogy with the molecules suspended above the chip.

Interacting with these molecules (the qubit registers) is done using external lasers which ‘perform’ gate operations by putting molecules into a given state; likewise the lasers can be coordinated to interact with one or many qubits and induce entanglement. Unlike for semiconductor-based superconducting quantum computers which require, among other things, exotic deep refrigeration, ion trap systems are cheap and easier to build and operate.

Said Allen, “For the cost of a dilution refrigerator alone, not even given the parts and components and the rest of the things [required for a superconducting quantum computer], you can build an entire ion trap based system of much greater power and capability. It’s also smaller, like the volume size of a kitchen refrigerator versus room-size and you can scale up qubits without changing the physical hardware.

“The vacuum chambers are cheap. The chips are not transistor-based chips. They are just electrodes. The lasers we use are off the shelf. We have to set up some optical paths to rout the lasers and impart different waveforms onto the lasers to create the transitions in the ions for operations. None of the stuff is super exotic. They don’t require a lot of power to run. They run off wall power, they don’t need 480 volts or 220 volts.” (Shown below is a figure taken from Monroe’s 2016 paper showing roughly the trapped ion approach.)

IonQ plans to double its qubit count roughly every year. Its current architecture, according to Chapman, can support scaling full mesh connectivity to 32-qubits. That’s impressive. Given the lack of a need for error correction, long coherence times relative to gate times, he believes IonQ’s approach will enable tackling larger and more complicated algorithms and shorten the time it takes before someone achieves quantum advantage on an IonQ.

It all sounds very compelling.

One quantum watcher, Bob Sorensen, VP research and technology, Hyperion Research, offers a nuanced view: “Strictly speaking, trapped ions are a good way to go because there are some significant advantages to the scheme. Trapped ions can build on an existing set of technologies used to develop things like atomic clocks and precision measurements instruments, and they operate at room temperature. In addition, trapped ions have relatively long coherence times – the amount of time a qubit can stay in a superposition state so it can be used to do quantum operations – compared with just about every other QC modality, as well as high gate fidelity, the amount of error introduced during a QC gate operation.”

Conversely, he noted, “Trapped ion schemes need to be controlled with a complex combination of microwave and optical devices which can be problematic when it comes to scaling trapped ion quantum computers to more than a few qubits. The point here is there are distinct advantages, but also technical hurdles that cannot be ignored. Perhaps more important, to date there has not been much real demonstration of the ability to build large, controllable trapped ion devices. Theoretical advantages are one thing, demonstration of capability on real quantum applications are another.”

IonQ would likely dispute some of that and also argue that it has been steadily advancing the state of the art. In March, the company published two papers, one benchmarking its 11-qubit system demonstrating high gate fidelity. The second paper described work performed on an IonQ system to estimate ground state energy in a water molecule.

With a bit of marketing bravado, the IonQ website touts: “Our quantum cores use lasers pointed at individual atoms to perform longer, more sophisticated calculations with fewer errors than any quantum computer yet built. In 2019, leading companies will start investigating real-world problems in chemistry, medicine, finance, logistics, and more using our systems.”

At least the last portion seems a stretch. Solid developmental work is ongoing in many quantum camps but use of production-quality applications or quantum algorithms on quantum computers to solve real-world problems seems distant.

Chapman and Allen offered few details on how soon the current “private use, beta user” effort will transform into a broader offering except to say that something web-based is likely later this year. They were also chary on revealing too much about their plans for tool development or even developer community development.

“What we have in our software stack is an API that allows you to run a quantum program. We expect that most people will get to our quantum hardware via cloud providers in the future. In the future you will presumably have, instead of an EC2 instance just as an example, a quantum computer instance. Until the world gets enough experience with the quantum computers, they are probably not moving to datacenters. They will probably stay at our datacenter for awhile where we have the expertise to fix them and keep them up and running,” Chapman.

Chapman and Allen emphasize IonQ has invested heavily in the compiler and optimizer technology for turning these algorithms into runnable items on the computer. Said Allen, “In addition to the advantage of requiring substantially less overhead for error correction, the native gates allow us to do a compression of algorithms without any loss of fidelity; that allows us to run algorithms in a fewer number of steps, shorter period of time, and that mapping is something that can be hidden from the developer.”

They also cited a growing cadre of what they call Q-tips, consultants who will work with customers to help them get their algorithms and applications running.

Some of IonQ’s aggressive marketing is likely intended to make up ground in the quest for mindshare in the quantum computing community where the general clamor has grown loud. It’s also in keeping with their QC brethren’s habits where standing out from the growing crowd becomes more difficult as the din around quantum computing grows.

Sorensen said, “The main point to remember is that quantum computing research is still in a nascent stage and much more speculative then in traditional computing, where the fundamental device technology has been fixed for a while and universally adopted – silicon-based CMOS – but instead include a wide range of vastly different schemes, where each offers their own set of challenges and opportunities. Indeed, I like to posit that the fundamental QC technology that may support the QCs in the 2030s across a wide range of application may not even have yet been conceived.

“I look forward to the day when IonQ can demonstrate a significant QC-based application that not only outperforms classical counterparts but that also leads the pack in performance compared with the range of other QC modalities currently under consideration.”

Stay tuned.

[i]Co-Designing a Scalable Quantum Computer with Trapped Atomic Ions

  1. R. BrownJ. KimC. Monroe, https://arxiv.org/abs/1602.02840
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ll get there at last month’s MIT-IBM Watson AI Lab’s AI Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve the problem, NASA researchers are using the world’s fastes Read more…

By Staff report

Chaminade University’s Immersion Program Builds Capacity for Data Science in Hawaii, Pacific Region

October 10, 2019

Kuleana is a uniquely Hawaiian value and practice which embodies responsibility to self, community, and the ‘aina' (land). At Chaminade University, a federally designated Native Hawaiian serving university in Hawai‘i Read more…

By Faith Singer-Villalobos

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

HPC in the Cloud: Avoid These Common Pitfalls

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community.]

It seems that everyone is experimenting about cloud computing. Read more…

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

NSF Announces New AI Program; Plans $120M in Funding Next Year

October 8, 2019

As the saying goes, when you’re hot, you’re hot. Right now, AI is scalding. Today the National Science Foundation announced a new AI initiative – The National Artificial Intelligence Research Institutes program – with plans to invest about “$120 million in grants next year... Read more…

By Staff report

DOE Sets Sights on Accelerating AI (and other) Technology Transfer

October 3, 2019

For the past two days DOE leaders along with ~350 members from academia and industry gathered in Chicago to discuss AI development and the ways in which industr Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

ISC Keynote: Thomas Sterling’s Take on Whither HPC

June 20, 2019

Entertaining, insightful, and unafraid to launch the occasional verbal ICBM, HPC pioneer Thomas Sterling delivered his 16th annual closing keynote at ISC yesterday. He explored, among other things: exascale machinations; quantum’s bubbling money pot; Arm’s new HPC viability; Europe’s... Read more…

By John Russell

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This