Quantum Upstart: IonQ Sets Sights on Challenging IBM, Rigetti, Others

By John Russell

June 5, 2019

Until now most of the buzz around quantum computing has been generated by folks already in the computer business – systems makers, chip makers, and big cloud providers. Their efforts have been dominated by semiconductor-based, superconducting approaches. The old saw “to a hammer all else looks like a nail” seems to fit here.

Now, a two-year-old start-up – IonQ – that’s pioneering trapped ion technology for quantum computing is jumping into the fray with some brash claims. IonQ reports there’s there’s less overhead required for error correction with its system, that entangling large numbers of qubits is much easier, and that the base technology is mundane, less costly, and compact. No exotic dilution refrigerators here. Indeed much of the approach is derived from decades old atomic clock technology.

Traction for trapped ion technology in the QC world is fairly recent. It was just a year ago NSF initiated a trapped ion quantum computing (STAQ) project. Late last month IonQ installed a new president and CEO, Peter Chapman, whose job is to accelerate commercial success; accomplishing that has eluded everyone in the commercial quantum space so far as the machines and needed ecosystem (tools, developers, breadth of quantum algorithms, etc.) remain in developmental stages. IonQ’s founding president and CEO, Christopher Monroe, is stepping into the chief scientist role, and indeed he is a pioneer in trapped ion technology and one of the authors of an influential 2016 paper[i]on the technology.

Earlier this week Chapman and Stewart Allen, the company COO, briefed HPCwire on IonQ’s technology and roll-out plans. Interestingly much of the conversation focused on hammering home their view that trapped ion technology is set to zoom past the semiconductor-based, superconducting approaches practiced by IBM, Google, and Rigetti Computing.

Based in College Park, MD, not far from the University of Maryland where Monroe did much of his work, IonQ has built three 11-qubit systems. Access to those machines is still “private and in beta stages” with broader access via the web coming, perhaps later this year. Notably, New Enterprise Associates, GV (formerly Google Ventures) and AWS are all investors. In fact, Chapman was director of engineering at Amazon Prime before joining Ion.

One big problem with quantum computers today is that they are noisy. Qubits, by and large, are delicate things that fall apart when disturbed by virtually anything (heat, vibration, stray electromagnetic influence, etc.). Building systems to eliminate those noises is an ongoing challenge, particularly for systems based on semiconductor-based, superconducting qubits. These noisy systems require daunting error correction approaches that have so far largely proved impractical. A second thorny problem is figuring out how to controllably entangle large numbers of qubits. Don’t forget that it is entanglement that gives quantum computing its real power.

Photo of IonQ’s ion trap chip with image of ions superimposed over it. Source: IonQ

Chapman argued trapped ion technology is vastly superior in handing these issues than semiconductor-based superconducting approaches. We haven’t heard as much about it, he says, because trapped ion technology grew up in a quieter community unlike the boisterous, jostling world of computer technology suppliers. With the fundamental work now completed, he argues trapped ion technology and IonQ in particular will quickly move to the forefront of quantum computing.

Here’s roughly how the trapped ion approach works: (Apologies for error; Monroe’s 2016 paper is actually terrific and an accessible reference.)

Ionized molecules with appropriate valence structure are used as the qubit registers. IonQ uses Ybions. A key strength here is the ions are essentially identical and reliable in their behavior. Outer electrons can be readily pumped into higher energy level and have a relatively long time before collapse. Depending on its state, the molecule represents a zero or a one. It is straightforward to generate and insert these ions into the ion trap, a “magnetic bottle” if you will, and hold them steady. Chapman use a mag-lev chip analogy with the molecules suspended above the chip.

Interacting with these molecules (the qubit registers) is done using external lasers which ‘perform’ gate operations by putting molecules into a given state; likewise the lasers can be coordinated to interact with one or many qubits and induce entanglement. Unlike for semiconductor-based superconducting quantum computers which require, among other things, exotic deep refrigeration, ion trap systems are cheap and easier to build and operate.

Said Allen, “For the cost of a dilution refrigerator alone, not even given the parts and components and the rest of the things [required for a superconducting quantum computer], you can build an entire ion trap based system of much greater power and capability. It’s also smaller, like the volume size of a kitchen refrigerator versus room-size and you can scale up qubits without changing the physical hardware.

“The vacuum chambers are cheap. The chips are not transistor-based chips. They are just electrodes. The lasers we use are off the shelf. We have to set up some optical paths to rout the lasers and impart different waveforms onto the lasers to create the transitions in the ions for operations. None of the stuff is super exotic. They don’t require a lot of power to run. They run off wall power, they don’t need 480 volts or 220 volts.” (Shown below is a figure taken from Monroe’s 2016 paper showing roughly the trapped ion approach.)

IonQ plans to double its qubit count roughly every year. Its current architecture, according to Chapman, can support scaling full mesh connectivity to 32-qubits. That’s impressive. Given the lack of a need for error correction, long coherence times relative to gate times, he believes IonQ’s approach will enable tackling larger and more complicated algorithms and shorten the time it takes before someone achieves quantum advantage on an IonQ.

It all sounds very compelling.

One quantum watcher, Bob Sorensen, VP research and technology, Hyperion Research, offers a nuanced view: “Strictly speaking, trapped ions are a good way to go because there are some significant advantages to the scheme. Trapped ions can build on an existing set of technologies used to develop things like atomic clocks and precision measurements instruments, and they operate at room temperature. In addition, trapped ions have relatively long coherence times – the amount of time a qubit can stay in a superposition state so it can be used to do quantum operations – compared with just about every other QC modality, as well as high gate fidelity, the amount of error introduced during a QC gate operation.”

Conversely, he noted, “Trapped ion schemes need to be controlled with a complex combination of microwave and optical devices which can be problematic when it comes to scaling trapped ion quantum computers to more than a few qubits. The point here is there are distinct advantages, but also technical hurdles that cannot be ignored. Perhaps more important, to date there has not been much real demonstration of the ability to build large, controllable trapped ion devices. Theoretical advantages are one thing, demonstration of capability on real quantum applications are another.”

IonQ would likely dispute some of that and also argue that it has been steadily advancing the state of the art. In March, the company published two papers, one benchmarking its 11-qubit system demonstrating high gate fidelity. The second paper described work performed on an IonQ system to estimate ground state energy in a water molecule.

With a bit of marketing bravado, the IonQ website touts: “Our quantum cores use lasers pointed at individual atoms to perform longer, more sophisticated calculations with fewer errors than any quantum computer yet built. In 2019, leading companies will start investigating real-world problems in chemistry, medicine, finance, logistics, and more using our systems.”

At least the last portion seems a stretch. Solid developmental work is ongoing in many quantum camps but use of production-quality applications or quantum algorithms on quantum computers to solve real-world problems seems distant.

Chapman and Allen offered few details on how soon the current “private use, beta user” effort will transform into a broader offering except to say that something web-based is likely later this year. They were also chary on revealing too much about their plans for tool development or even developer community development.

“What we have in our software stack is an API that allows you to run a quantum program. We expect that most people will get to our quantum hardware via cloud providers in the future. In the future you will presumably have, instead of an EC2 instance just as an example, a quantum computer instance. Until the world gets enough experience with the quantum computers, they are probably not moving to datacenters. They will probably stay at our datacenter for awhile where we have the expertise to fix them and keep them up and running,” Chapman.

Chapman and Allen emphasize IonQ has invested heavily in the compiler and optimizer technology for turning these algorithms into runnable items on the computer. Said Allen, “In addition to the advantage of requiring substantially less overhead for error correction, the native gates allow us to do a compression of algorithms without any loss of fidelity; that allows us to run algorithms in a fewer number of steps, shorter period of time, and that mapping is something that can be hidden from the developer.”

They also cited a growing cadre of what they call Q-tips, consultants who will work with customers to help them get their algorithms and applications running.

Some of IonQ’s aggressive marketing is likely intended to make up ground in the quest for mindshare in the quantum computing community where the general clamor has grown loud. It’s also in keeping with their QC brethren’s habits where standing out from the growing crowd becomes more difficult as the din around quantum computing grows.

Sorensen said, “The main point to remember is that quantum computing research is still in a nascent stage and much more speculative then in traditional computing, where the fundamental device technology has been fixed for a while and universally adopted – silicon-based CMOS – but instead include a wide range of vastly different schemes, where each offers their own set of challenges and opportunities. Indeed, I like to posit that the fundamental QC technology that may support the QCs in the 2030s across a wide range of application may not even have yet been conceived.

“I look forward to the day when IonQ can demonstrate a significant QC-based application that not only outperforms classical counterparts but that also leads the pack in performance compared with the range of other QC modalities currently under consideration.”

Stay tuned.

[i]Co-Designing a Scalable Quantum Computer with Trapped Atomic Ions

  1. R. BrownJ. KimC. Monroe, https://arxiv.org/abs/1602.02840
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Army Seeks AI Ground Truth

April 3, 2020

Deep neural networks are being mustered by U.S. military researchers to marshal new technology forces on the Internet of Battlefield Things. U.S. Army and industry researchers said this week they have developed a “c Read more…

By George Leopold

Piz Daint Tackles Marsquakes

April 3, 2020

Even as researchers use supercomputers to probe the mysteries of earthquakes here on Earth, others are setting their sights on quakes just a little farther away. Researchers at ETH Zürich in Switzerland have applied sup Read more…

By Oliver Peckham

HPC Career Notes: April 2020 Edition

April 2, 2020

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

By Mariana Iriarte

AMD Epyc CPUs Now on Bare Metal IBM Cloud Servers

April 1, 2020

AMD’s expanding presence in the datacenter and cloud computing markets took a step forward with today’s announcement that its 7nm 2nd Gen Epyc 7642 CPUs are now available on IBM Cloud bare metal servers. AMD, whose Read more…

By Doug Black

Supercomputer Testing Probes Viral Transmission in Airplanes

April 1, 2020

It might be a long time before the general public is flying again, but the question remains: how high-risk is air travel in terms of viral infection? In an article for the Texas Advanced Computing Center (TACC), Faith Si Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. There are roughly 30 ECP application development (AD) subproj Read more…

By John Russell

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. Th Read more…

By John Russell

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatme Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This