Quantum Upstart: IonQ Sets Sights on Challenging IBM, Rigetti, Others

By John Russell

June 5, 2019

Until now most of the buzz around quantum computing has been generated by folks already in the computer business – systems makers, chip makers, and big cloud providers. Their efforts have been dominated by semiconductor-based, superconducting approaches. The old saw “to a hammer all else looks like a nail” seems to fit here.

Now, a two-year-old start-up – IonQ – that’s pioneering trapped ion technology for quantum computing is jumping into the fray with some brash claims. IonQ reports there’s there’s less overhead required for error correction with its system, that entangling large numbers of qubits is much easier, and that the base technology is mundane, less costly, and compact. No exotic dilution refrigerators here. Indeed much of the approach is derived from decades old atomic clock technology.

Traction for trapped ion technology in the QC world is fairly recent. It was just a year ago NSF initiated a trapped ion quantum computing (STAQ) project. Late last month IonQ installed a new president and CEO, Peter Chapman, whose job is to accelerate commercial success; accomplishing that has eluded everyone in the commercial quantum space so far as the machines and needed ecosystem (tools, developers, breadth of quantum algorithms, etc.) remain in developmental stages. IonQ’s founding president and CEO, Christopher Monroe, is stepping into the chief scientist role, and indeed he is a pioneer in trapped ion technology and one of the authors of an influential 2016 paper[i]on the technology.

Earlier this week Chapman and Stewart Allen, the company COO, briefed HPCwire on IonQ’s technology and roll-out plans. Interestingly much of the conversation focused on hammering home their view that trapped ion technology is set to zoom past the semiconductor-based, superconducting approaches practiced by IBM, Google, and Rigetti Computing.

Based in College Park, MD, not far from the University of Maryland where Monroe did much of his work, IonQ has built three 11-qubit systems. Access to those machines is still “private and in beta stages” with broader access via the web coming, perhaps later this year. Notably, New Enterprise Associates, GV (formerly Google Ventures) and AWS are all investors. In fact, Chapman was director of engineering at Amazon Prime before joining Ion.

One big problem with quantum computers today is that they are noisy. Qubits, by and large, are delicate things that fall apart when disturbed by virtually anything (heat, vibration, stray electromagnetic influence, etc.). Building systems to eliminate those noises is an ongoing challenge, particularly for systems based on semiconductor-based, superconducting qubits. These noisy systems require daunting error correction approaches that have so far largely proved impractical. A second thorny problem is figuring out how to controllably entangle large numbers of qubits. Don’t forget that it is entanglement that gives quantum computing its real power.

Photo of IonQ’s ion trap chip with image of ions superimposed over it. Source: IonQ

Chapman argued trapped ion technology is vastly superior in handing these issues than semiconductor-based superconducting approaches. We haven’t heard as much about it, he says, because trapped ion technology grew up in a quieter community unlike the boisterous, jostling world of computer technology suppliers. With the fundamental work now completed, he argues trapped ion technology and IonQ in particular will quickly move to the forefront of quantum computing.

Here’s roughly how the trapped ion approach works: (Apologies for error; Monroe’s 2016 paper is actually terrific and an accessible reference.)

Ionized molecules with appropriate valence structure are used as the qubit registers. IonQ uses Ybions. A key strength here is the ions are essentially identical and reliable in their behavior. Outer electrons can be readily pumped into higher energy level and have a relatively long time before collapse. Depending on its state, the molecule represents a zero or a one. It is straightforward to generate and insert these ions into the ion trap, a “magnetic bottle” if you will, and hold them steady. Chapman use a mag-lev chip analogy with the molecules suspended above the chip.

Interacting with these molecules (the qubit registers) is done using external lasers which ‘perform’ gate operations by putting molecules into a given state; likewise the lasers can be coordinated to interact with one or many qubits and induce entanglement. Unlike for semiconductor-based superconducting quantum computers which require, among other things, exotic deep refrigeration, ion trap systems are cheap and easier to build and operate.

Said Allen, “For the cost of a dilution refrigerator alone, not even given the parts and components and the rest of the things [required for a superconducting quantum computer], you can build an entire ion trap based system of much greater power and capability. It’s also smaller, like the volume size of a kitchen refrigerator versus room-size and you can scale up qubits without changing the physical hardware.

“The vacuum chambers are cheap. The chips are not transistor-based chips. They are just electrodes. The lasers we use are off the shelf. We have to set up some optical paths to rout the lasers and impart different waveforms onto the lasers to create the transitions in the ions for operations. None of the stuff is super exotic. They don’t require a lot of power to run. They run off wall power, they don’t need 480 volts or 220 volts.” (Shown below is a figure taken from Monroe’s 2016 paper showing roughly the trapped ion approach.)

IonQ plans to double its qubit count roughly every year. Its current architecture, according to Chapman, can support scaling full mesh connectivity to 32-qubits. That’s impressive. Given the lack of a need for error correction, long coherence times relative to gate times, he believes IonQ’s approach will enable tackling larger and more complicated algorithms and shorten the time it takes before someone achieves quantum advantage on an IonQ.

It all sounds very compelling.

One quantum watcher, Bob Sorensen, VP research and technology, Hyperion Research, offers a nuanced view: “Strictly speaking, trapped ions are a good way to go because there are some significant advantages to the scheme. Trapped ions can build on an existing set of technologies used to develop things like atomic clocks and precision measurements instruments, and they operate at room temperature. In addition, trapped ions have relatively long coherence times – the amount of time a qubit can stay in a superposition state so it can be used to do quantum operations – compared with just about every other QC modality, as well as high gate fidelity, the amount of error introduced during a QC gate operation.”

Conversely, he noted, “Trapped ion schemes need to be controlled with a complex combination of microwave and optical devices which can be problematic when it comes to scaling trapped ion quantum computers to more than a few qubits. The point here is there are distinct advantages, but also technical hurdles that cannot be ignored. Perhaps more important, to date there has not been much real demonstration of the ability to build large, controllable trapped ion devices. Theoretical advantages are one thing, demonstration of capability on real quantum applications are another.”

IonQ would likely dispute some of that and also argue that it has been steadily advancing the state of the art. In March, the company published two papers, one benchmarking its 11-qubit system demonstrating high gate fidelity. The second paper described work performed on an IonQ system to estimate ground state energy in a water molecule.

With a bit of marketing bravado, the IonQ website touts: “Our quantum cores use lasers pointed at individual atoms to perform longer, more sophisticated calculations with fewer errors than any quantum computer yet built. In 2019, leading companies will start investigating real-world problems in chemistry, medicine, finance, logistics, and more using our systems.”

At least the last portion seems a stretch. Solid developmental work is ongoing in many quantum camps but use of production-quality applications or quantum algorithms on quantum computers to solve real-world problems seems distant.

Chapman and Allen offered few details on how soon the current “private use, beta user” effort will transform into a broader offering except to say that something web-based is likely later this year. They were also chary on revealing too much about their plans for tool development or even developer community development.

“What we have in our software stack is an API that allows you to run a quantum program. We expect that most people will get to our quantum hardware via cloud providers in the future. In the future you will presumably have, instead of an EC2 instance just as an example, a quantum computer instance. Until the world gets enough experience with the quantum computers, they are probably not moving to datacenters. They will probably stay at our datacenter for awhile where we have the expertise to fix them and keep them up and running,” Chapman.

Chapman and Allen emphasize IonQ has invested heavily in the compiler and optimizer technology for turning these algorithms into runnable items on the computer. Said Allen, “In addition to the advantage of requiring substantially less overhead for error correction, the native gates allow us to do a compression of algorithms without any loss of fidelity; that allows us to run algorithms in a fewer number of steps, shorter period of time, and that mapping is something that can be hidden from the developer.”

They also cited a growing cadre of what they call Q-tips, consultants who will work with customers to help them get their algorithms and applications running.

Some of IonQ’s aggressive marketing is likely intended to make up ground in the quest for mindshare in the quantum computing community where the general clamor has grown loud. It’s also in keeping with their QC brethren’s habits where standing out from the growing crowd becomes more difficult as the din around quantum computing grows.

Sorensen said, “The main point to remember is that quantum computing research is still in a nascent stage and much more speculative then in traditional computing, where the fundamental device technology has been fixed for a while and universally adopted – silicon-based CMOS – but instead include a wide range of vastly different schemes, where each offers their own set of challenges and opportunities. Indeed, I like to posit that the fundamental QC technology that may support the QCs in the 2030s across a wide range of application may not even have yet been conceived.

“I look forward to the day when IonQ can demonstrate a significant QC-based application that not only outperforms classical counterparts but that also leads the pack in performance compared with the range of other QC modalities currently under consideration.”

Stay tuned.

[i]Co-Designing a Scalable Quantum Computer with Trapped Atomic Ions

  1. R. BrownJ. KimC. Monroe, https://arxiv.org/abs/1602.02840
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its next-generation IPU platform: the IPU-Machine M2000. With the n Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic competitiveness, and national security. This has been the mai Read more…

By Jack Dongarra and Stanimire Tomov

There’s No Storage Like ATGC: Breakthrough Helps to Store ‘The Wizard of Oz’ in DNA

July 15, 2020

Even as storage density reaches new heights, many researchers have their eyes set on a paradigm shift in high-density information storage: storing data in the four nucleotides (A, T, G and C) that constitute DNA, a metho Read more…

By Oliver Peckham

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle forward demonstrating an event-driven, visual-tactile perce Read more…

By John Russell

What’s New in HPC Research: Volcanoes, Mobile Games, Proteins & More

July 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

AWS Solution Channel

INEOS TEAM UK Accelerates Boat Design for America’s Cup Using HPC on AWS

The America’s Cup Dream

The 36th America’s Cup race will be decided in Auckland, New Zealand in 2021. Like all the teams, INEOS TEAM UK will compete in a boat whose design will have followed guidelines set by race organizers to ensure the crew’s sailing skills are fully tested. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and increase the vehicle’s speed and efficiency. These fluid dyn Read more…

By Oliver Peckham

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its nex Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic c Read more…

By Jack Dongarra and Stanimire Tomov

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle Read more…

By John Russell

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This