Super-Connecting the Supercomputers

By Gilad Shainer, Mellanox Technologies

June 10, 2019

Supercomputers are the essential tools we need to conduct research, enable scientific discoveries, design new products, and develop self-learning software algorithms. Supercomputing leadership means scientific leadership, which explains the investments made by many governments and research institutes to build faster and more powerful supercomputing platforms.

The heart of a supercomputer is the network that connects the compute elements together, enabling parallel and synchronized computing cycles. Over the past decades, multiple network technologies were created and multiple have disappeared. InfiniBand, an industry standard developed in 1999, continues to show a strong presence in the high-performance computing market. It connected one of the top three supercomputers in 2013 and maintains a strong roadmap into the future.

Many proprietary networks that existed 10 and 15 years ago are no longer in use today; QsNet, Myrinet, Seastar are but a few examples. QSNet technology was later used by Gnodal, which added Ethernet gateways to form an Ethernet switch network, but its development was halted several years ago. Part of that technology and concept is being used in the first generation of Slingshot. Slingshot is planned to replace a former proprietary Aries technology, which replaced Gemini proprietary technology, which replaced Seastar. One of the main disadvantages of a proprietary network is that it requires recreating old concepts again and again—concepts such as congestion control, routing schemes and more.

Being a standard-based interconnect, InfiniBand enjoys the continuous development of new capabilities, better performance, and scalability. It is used in many of the leading supercomputers around the world, demonstrating 96% network utilization with probably the most advanced adaptive routing capabilities (“The Design, Deployment, and Evaluation of the CORAL Pre-Exascale Systems”), and delivering leading performance for the most demanding high compute intensive applications.

InfiniBand technology can be separated into three main pillars: connectivity, network, and communication. The connectivity pillar refers to the elements around the interconnect infrastructure such as topologies. The network pillar refers to the network transport and routing for example. And the communication pillar refers to co-design elements related to communication frameworks such as MPI, SHMEM/PGAS and more.

The Connectivity Pillar

InfiniBand was specified and designed as the ultimate software-defined network. One can define and manage complete routing schemes of the network from a centralized place, and everything is programmable. This advantage enables support for any interconnect topology and optimizes topologies to best fit the applications and workloads needs. Many of today’s supercomputers use the Fat Tree topology as it provides low latency and effectively supports a variety of applications. There are some Torus topologies in use, which best serve stencil applications. Other topologies including Hypercube, Enhanced Hypercube, Dragonfly+ and more are coming in the future.

Dragonfly+ is hybrid topology based on the conventional Dragonfly and extended using the properties of Fat Tree providing the benefit of both. It includes a Fully Progressive Adapting Routing technique, is more scalable than Dragonfly at the same cost, and able to provide the same or better throughput for equivalent Dragonfly and Fat Tree topologies under various traffic patterns (“Dragonfly+: Low Cost Topology for Scaling Datacenters,” Alexander Shpiner, Zachy Haramaty, Saar Eliad, Vladimir Zdornov, Barak Gafni and Eitan Zahavi).

Furthermore, the traditional Dragonfly presents performance limitations for adversarial traffic, as within a group, there is only one route from ingress switch to egress switch. Therefore, network bandwidth decreases with higher switch radix. The more ports on the switch, the lower the data throughput. InfiniBand Dragonfly+ includes multiple routes from ingress switch to egress switch, thereby delivering the highest data throughput. Moreover, due to its hybrid design, Dragonfly+ can simply be extended over time with no need to reroute any of the long cables—an advantage over Fat Trees and traditional Dragonfly networks.

Multi-Host technology enables multiple hosts to connect to a single interconnect adapter by separating the PCIe interface into multiple and independent interfaces, with no performance degradation. This results in lower total cost of ownership (TCO) in the data center by reducing CAPEX requirements from multiple cables, network adapters, and switch ports to only one of each, and by reducing OPEX by cutting down on switch port management and overall power usage.

The Network Pillar

InfiniBand is a pure offload interconnect, managing all network function and transport at the network level, and not imposing overheads on the CPU as other networks such as Ethernet or OmniPath. This results in more CPU cycles being dedicated to the applications and higher overall performance and scalability.

In many networks, a management software utility is responsible for receiving notifications of network errors and in order to modify network routes or change job scheduling to avoid the errors. But this can be time consuming—around 5 seconds for 1000 nodes and 30 seconds for clusters with 10000 or more endpoints—certainly not fast enough to ensure the seamless integrity of a running computation. In fact, no software mechanism can be responsive enough at very large scales to detect and fix fabrics that suffer from a link failure. To address this problem, InfiniBand includes a new and innovative solution called SHIELD (Self-Healing Interconnect Enhancement for Intelligent Datacenters), which takes advantage of the intelligence already built into InfiniBand switches. By providing the fabric with self-healing autonomy, the speed with which communications can be corrected in the face of a link failure can be sped up by 5000x. This is fast enough to save communications from expensive retransmissions or absolute failure.

The Communication Pillar

Mellanox Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)™ technology is included in the EDR and HDR InfiniBand switches. SHARP improves upon the performance of MPI operation by offloading collective operations from the CPU to the switch network, and eliminating the need to send data multiple times between endpoints. This innovative approach decreases the amount of data traversing the network as aggregation nodes are reached, and dramatically reduces the MPI operations time. Implementing collective communication algorithms in the network also has additional benefits, such as freeing up valuable CPU resources for computation rather than using them to process communication.

SHARP provides lower and flat latencies for data aggregation and reduction operations (e.g., MPI Reduce, All-Reduce, Barrier, Broadcast, etc.) compared to other options, so adding more nodes to compute clusters does not adversely affect. SHARP is also the best technology to enable the Exascale supercomputing generation.

Furthermore, SHARP provides key performance enhancement for deep learning and artificial intelligence applications. The combination of SHARP with leading GPUs and the NVIDIA Collective Communications Library (NCCL) deliver leading efficiency and scalability for example.

Another new technology is SNAP (Software-defined Network Accelerated Processing) which enables hardware virtualization of PCIe devices, such as NVMe storage. The NVMe SNAP framework allows users to easily integrate networked storage solutions into their high-performance compute and storage infrastructures. It enables the efficient disaggregation of compute and storage to facilitate fully-optimized resource utilization.

NVMe SNAP logically presents networked storage, such as NVMe over Fabrics (NVMe-oF), as a local NVMe drive. This allows the host operating system to use a standard NVMe-driver instead of a remote networking storage protocol. The host benefits from the performance and simplicity of local NVMe storage, unaware that remote InfiniBand connected storage is being utilized and virtualized by NVMe SNAP.

Furthermore SNAP may apply sophisticated logic and data protection mechanisms (mirroring, compression, data-deduplication, thin-provisioning, encryption, etc.) to the network storage that it virtualizes as local NVMe.

Super-Connecting the #1 Supercomputers

By providing leading data throughput, extremely low latency, and, most importantly, In-Network Computing engines and full programmability, InfiniBand is the leading interconnect technology for compute intensive applications, high performance computing, deep learning and other applications. InfiniBand overtakes proprietary networks and accelerates many of the top supercomputers around the world.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian Supercomputer Employed to Develop COVID-19 Treatment

March 31, 2020

From Summit to [email protected], global supercomputing is continuing to mobilize against the coronavirus pandemic by crunching massive problems like epidemiology, therapeutic development and vaccine development. The latest a Read more…

By Staff report

What’s New in HPC Research: Supersonic Jets, Skin Modeling, Astrophysics & More

March 31, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatment and vaccine development. Now, Lawrence Livermore National Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium-Range Weather Forecasts and the U.S. National Oceanic and At Read more…

By Oliver Peckham

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be nearer to becoming a practical reality. In this second inst Read more…

By John Russell

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

Servers Headed to Junkyard Find 2nd Life Fighting Cancer in Clusters

March 20, 2020

Ottawa-based charitable organization Cancer Computer is on a mission to stamp out cancer and other life-threatening diseases, including coronavirus, by putting Read more…

By Tiffany Trader

Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application... Read more…

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This