Super-Connecting the Supercomputers

By Gilad Shainer, Mellanox Technologies

June 10, 2019

Supercomputers are the essential tools we need to conduct research, enable scientific discoveries, design new products, and develop self-learning software algorithms. Supercomputing leadership means scientific leadership, which explains the investments made by many governments and research institutes to build faster and more powerful supercomputing platforms.

The heart of a supercomputer is the network that connects the compute elements together, enabling parallel and synchronized computing cycles. Over the past decades, multiple network technologies were created and multiple have disappeared. InfiniBand, an industry standard developed in 1999, continues to show a strong presence in the high-performance computing market. It connected one of the top three supercomputers in 2013 and maintains a strong roadmap into the future.

Many proprietary networks that existed 10 and 15 years ago are no longer in use today; QsNet, Myrinet, Seastar are but a few examples. QSNet technology was later used by Gnodal, which added Ethernet gateways to form an Ethernet switch network, but its development was halted several years ago. Part of that technology and concept is being used in the first generation of Slingshot. Slingshot is planned to replace a former proprietary Aries technology, which replaced Gemini proprietary technology, which replaced Seastar. One of the main disadvantages of a proprietary network is that it requires recreating old concepts again and again—concepts such as congestion control, routing schemes and more.

Being a standard-based interconnect, InfiniBand enjoys the continuous development of new capabilities, better performance, and scalability. It is used in many of the leading supercomputers around the world, demonstrating 96% network utilization with probably the most advanced adaptive routing capabilities (“The Design, Deployment, and Evaluation of the CORAL Pre-Exascale Systems”), and delivering leading performance for the most demanding high compute intensive applications.

InfiniBand technology can be separated into three main pillars: connectivity, network, and communication. The connectivity pillar refers to the elements around the interconnect infrastructure such as topologies. The network pillar refers to the network transport and routing for example. And the communication pillar refers to co-design elements related to communication frameworks such as MPI, SHMEM/PGAS and more.

The Connectivity Pillar

InfiniBand was specified and designed as the ultimate software-defined network. One can define and manage complete routing schemes of the network from a centralized place, and everything is programmable. This advantage enables support for any interconnect topology and optimizes topologies to best fit the applications and workloads needs. Many of today’s supercomputers use the Fat Tree topology as it provides low latency and effectively supports a variety of applications. There are some Torus topologies in use, which best serve stencil applications. Other topologies including Hypercube, Enhanced Hypercube, Dragonfly+ and more are coming in the future.

Dragonfly+ is hybrid topology based on the conventional Dragonfly and extended using the properties of Fat Tree providing the benefit of both. It includes a Fully Progressive Adapting Routing technique, is more scalable than Dragonfly at the same cost, and able to provide the same or better throughput for equivalent Dragonfly and Fat Tree topologies under various traffic patterns (“Dragonfly+: Low Cost Topology for Scaling Datacenters,” Alexander Shpiner, Zachy Haramaty, Saar Eliad, Vladimir Zdornov, Barak Gafni and Eitan Zahavi).

Furthermore, the traditional Dragonfly presents performance limitations for adversarial traffic, as within a group, there is only one route from ingress switch to egress switch. Therefore, network bandwidth decreases with higher switch radix. The more ports on the switch, the lower the data throughput. InfiniBand Dragonfly+ includes multiple routes from ingress switch to egress switch, thereby delivering the highest data throughput. Moreover, due to its hybrid design, Dragonfly+ can simply be extended over time with no need to reroute any of the long cables—an advantage over Fat Trees and traditional Dragonfly networks.

Multi-Host technology enables multiple hosts to connect to a single interconnect adapter by separating the PCIe interface into multiple and independent interfaces, with no performance degradation. This results in lower total cost of ownership (TCO) in the data center by reducing CAPEX requirements from multiple cables, network adapters, and switch ports to only one of each, and by reducing OPEX by cutting down on switch port management and overall power usage.

The Network Pillar

InfiniBand is a pure offload interconnect, managing all network function and transport at the network level, and not imposing overheads on the CPU as other networks such as Ethernet or OmniPath. This results in more CPU cycles being dedicated to the applications and higher overall performance and scalability.

In many networks, a management software utility is responsible for receiving notifications of network errors and in order to modify network routes or change job scheduling to avoid the errors. But this can be time consuming—around 5 seconds for 1000 nodes and 30 seconds for clusters with 10000 or more endpoints—certainly not fast enough to ensure the seamless integrity of a running computation. In fact, no software mechanism can be responsive enough at very large scales to detect and fix fabrics that suffer from a link failure. To address this problem, InfiniBand includes a new and innovative solution called SHIELD (Self-Healing Interconnect Enhancement for Intelligent Datacenters), which takes advantage of the intelligence already built into InfiniBand switches. By providing the fabric with self-healing autonomy, the speed with which communications can be corrected in the face of a link failure can be sped up by 5000x. This is fast enough to save communications from expensive retransmissions or absolute failure.

The Communication Pillar

Mellanox Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)™ technology is included in the EDR and HDR InfiniBand switches. SHARP improves upon the performance of MPI operation by offloading collective operations from the CPU to the switch network, and eliminating the need to send data multiple times between endpoints. This innovative approach decreases the amount of data traversing the network as aggregation nodes are reached, and dramatically reduces the MPI operations time. Implementing collective communication algorithms in the network also has additional benefits, such as freeing up valuable CPU resources for computation rather than using them to process communication.

SHARP provides lower and flat latencies for data aggregation and reduction operations (e.g., MPI Reduce, All-Reduce, Barrier, Broadcast, etc.) compared to other options, so adding more nodes to compute clusters does not adversely affect. SHARP is also the best technology to enable the Exascale supercomputing generation.

Furthermore, SHARP provides key performance enhancement for deep learning and artificial intelligence applications. The combination of SHARP with leading GPUs and the NVIDIA Collective Communications Library (NCCL) deliver leading efficiency and scalability for example.

Another new technology is SNAP (Software-defined Network Accelerated Processing) which enables hardware virtualization of PCIe devices, such as NVMe storage. The NVMe SNAP framework allows users to easily integrate networked storage solutions into their high-performance compute and storage infrastructures. It enables the efficient disaggregation of compute and storage to facilitate fully-optimized resource utilization.

NVMe SNAP logically presents networked storage, such as NVMe over Fabrics (NVMe-oF), as a local NVMe drive. This allows the host operating system to use a standard NVMe-driver instead of a remote networking storage protocol. The host benefits from the performance and simplicity of local NVMe storage, unaware that remote InfiniBand connected storage is being utilized and virtualized by NVMe SNAP.

Furthermore SNAP may apply sophisticated logic and data protection mechanisms (mirroring, compression, data-deduplication, thin-provisioning, encryption, etc.) to the network storage that it virtualizes as local NVMe.

Super-Connecting the #1 Supercomputers

By providing leading data throughput, extremely low latency, and, most importantly, In-Network Computing engines and full programmability, InfiniBand is the leading interconnect technology for compute intensive applications, high performance computing, deep learning and other applications. InfiniBand overtakes proprietary networks and accelerates many of the top supercomputers around the world.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

LRZ Adds Mega AI Aystem as It Stacks up on Future Computing Systems

May 25, 2022

The battle among high-performance computing hubs to stack up on cutting-edge computers for quicker time to science is getting steamy as new chip technologies become mainstream. A European supercomputing hub near Munich, called the Leibniz Supercomputing Centre, is deploying Cerebras Systems' CS-2 AI system as part of an internal initiative called Future Computing to assess alternative computing... Read more…

Nvidia Launches Four Arm-based Grace Server Designs

May 25, 2022

Nvidia is lining up Arm-based server platforms for a diverse range of HPC, AI and cloud applications. The new systems employ Nvidia’s custom Grace Arm CPUs in four different configurations, including a Grace Hopper HGX Read more…

Nvidia Bakes Liquid Cooling into PCIe GPU Cards

May 24, 2022

Nvidia is bringing liquid cooling, which it typically puts alongside GPUs on the high-performance computing systems, to its mainstream server GPU portfolio. The company will start shipping its A100 PCIe Liquid Cooled GPU, which is based on the Ampere architecture, for servers later this year. The liquid-cooled GPU based on the company's new Hopper architecture for PCIe slots will ship early next year. Read more…

Durham University to Test Rockport Networks on COSMA7 Supercomputer

May 24, 2022

Durham University’s Institute for Computational Cosmology (ICC) is home to the COSMA series of supercomputers (short for “cosmological machine”). COSMA—now in its eighth iteration, COSMA8—has been working to an Read more…

SoftIron Measures Its Carbon Footprint to Make a Point

May 24, 2022

Since its founding in 2012, London-based software-defined storage provider SoftIron has been making its case for what it calls secure provenance: a term that encompasses the company’s rigorous accounting of the supply Read more…

AWS Solution Channel

Shutterstock 1044740602

DTN Doubles Weather Forecasting Performance Using Amazon EC2 Hpc6a Instances

Organizations in weather-sensitive industries need highly accurate and near-real-time weather intelligence to make adept business decisions. Many companies in these industries rely on information from DTN, a global data, analytics, and technology company, for that information. Read more…

TACC Adds Details to Vision for Leadership-Class Computing Facility

May 23, 2022

The Texas Advanced Computing Center (TACC) at The University of Texas at Austin passed to the next phase of the planning process for the Leadership-Class Computing Facility (LCCF), a process that has many approval stage Read more…

LRZ Adds Mega AI Aystem as It Stacks up on Future Computing Systems

May 25, 2022

The battle among high-performance computing hubs to stack up on cutting-edge computers for quicker time to science is getting steamy as new chip technologies become mainstream. A European supercomputing hub near Munich, called the Leibniz Supercomputing Centre, is deploying Cerebras Systems' CS-2 AI system as part of an internal initiative called Future Computing to assess alternative computing... Read more…

Nvidia Launches Four Arm-based Grace Server Designs

May 25, 2022

Nvidia is lining up Arm-based server platforms for a diverse range of HPC, AI and cloud applications. The new systems employ Nvidia’s custom Grace Arm CPUs in Read more…

Nvidia Bakes Liquid Cooling into PCIe GPU Cards

May 24, 2022

Nvidia is bringing liquid cooling, which it typically puts alongside GPUs on the high-performance computing systems, to its mainstream server GPU portfolio. The company will start shipping its A100 PCIe Liquid Cooled GPU, which is based on the Ampere architecture, for servers later this year. The liquid-cooled GPU based on the company's new Hopper architecture for PCIe slots will ship early next year. Read more…

Durham University to Test Rockport Networks on COSMA7 Supercomputer

May 24, 2022

Durham University’s Institute for Computational Cosmology (ICC) is home to the COSMA series of supercomputers (short for “cosmological machine”). COSMA— Read more…

SoftIron Measures Its Carbon Footprint to Make a Point

May 24, 2022

Since its founding in 2012, London-based software-defined storage provider SoftIron has been making its case for what it calls secure provenance: a term that en Read more…

ISC 2022: International Association of Supercomputing Centers to Debut

May 23, 2022

At ISC 2022 in Hamburg, Germany, representatives from four supercomputing centers across three countries plan to debut the International Association of Supercom Read more…

ANL Special Colloquium on The Future of Computing

May 19, 2022

There are, of course, a myriad of ideas regarding computing’s future. At yesterday’s Argonne National Laboratory’s Director’s Special Colloquium, The Future of Computing, guest speaker Sadasivan Shankar, did his best to convince the audience that the high-energy cost of the current computing paradigm – not (just) economic cost; we’re talking entropy here – is fundamentally undermining computing’s progress such that... Read more…

HPE Announces New HPC Factory in Czech Republic

May 18, 2022

A week ahead of ISC High Performance 2022 (set to be held in Hamburg, Germany), supercomputing heavyweight HPE has announced a major investment in sovereign Eur Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

In Partnership with IBM, Canada to Get Its First Universal Quantum Computer

February 3, 2022

IBM today announced it will deploy its first quantum computer in Canada, putting Canada on a short list of countries that will have access to an IBM Quantum Sys Read more…

Supercomputer Simulations Show How Paxlovid, Pfizer’s Covid Antiviral, Works

February 3, 2022

Just about a month ago, Pfizer scored its second huge win of the pandemic when the U.S. Food and Drug Administration issued another emergency use authorization Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

Leading Solution Providers

Contributors

D-Wave to Go Public with SPAC Deal; Expects ~$1.6B Market Valuation

February 8, 2022

Quantum computing pioneer D-Wave today announced plans to go public via a SPAC (special purpose acquisition company) mechanism. D-Wave will merge with DPCM Capital in a transaction expected to produce $340 million in cash and result in a roughly $1.6 billion initial market valuation. The deal is expected to be completed in the second quarter of 2022 and the new company will be traded on the New York Stock... Read more…

Intel Announces Falcon Shores CPU-GPU Combo Architecture for 2024

February 18, 2022

Intel held its 2022 investor meeting yesterday, covering everything from the imminent Sapphire Rapids CPUs to the hotly anticipated (and delayed) Ponte Vecchio GPUs. But somewhat buried in its summary of the meeting was a new namedrop: “Falcon Shores,” described as “a new architecture that will bring x86 and Xe GPU together into a single socket.” The reveal was... Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Facebook Parent Meta’s New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will be used to help build new AI models, develop augmented reality tools, seamlessly analyze multimedia data and more. The supercomputer’s... Read more…

Nvidia Acquires Software-Defined Storage Provider Excelero

March 7, 2022

Nvidia has announced that it has acquired Excelero. The high-performance block storage provider, founded in 2014, will have its technology integrated into Nvidia’s enterprise software stack. Nvidia is not disclosing the value of the deal. Excelero’s core product, Excelero NVMesh, offers software-defined block storage via networked NVMe SSDs. NVMesh operates through... Read more…

Nvidia Announces ‘Eos’ Supercomputer

March 22, 2022

At GTC22 today, Nvidia unveiled its new H100 GPU, the first of its new ‘Hopper’ architecture, along with a slew of accompanying configurations, systems and Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire