Super-Connecting the Supercomputers

By Gilad Shainer, Mellanox Technologies

June 10, 2019

Supercomputers are the essential tools we need to conduct research, enable scientific discoveries, design new products, and develop self-learning software algorithms. Supercomputing leadership means scientific leadership, which explains the investments made by many governments and research institutes to build faster and more powerful supercomputing platforms.

The heart of a supercomputer is the network that connects the compute elements together, enabling parallel and synchronized computing cycles. Over the past decades, multiple network technologies were created and multiple have disappeared. InfiniBand, an industry standard developed in 1999, continues to show a strong presence in the high-performance computing market. It connected one of the top three supercomputers in 2013 and maintains a strong roadmap into the future.

Many proprietary networks that existed 10 and 15 years ago are no longer in use today; QsNet, Myrinet, Seastar are but a few examples. QSNet technology was later used by Gnodal, which added Ethernet gateways to form an Ethernet switch network, but its development was halted several years ago. Part of that technology and concept is being used in the first generation of Slingshot. Slingshot is planned to replace a former proprietary Aries technology, which replaced Gemini proprietary technology, which replaced Seastar. One of the main disadvantages of a proprietary network is that it requires recreating old concepts again and again—concepts such as congestion control, routing schemes and more.

Being a standard-based interconnect, InfiniBand enjoys the continuous development of new capabilities, better performance, and scalability. It is used in many of the leading supercomputers around the world, demonstrating 96% network utilization with probably the most advanced adaptive routing capabilities (“The Design, Deployment, and Evaluation of the CORAL Pre-Exascale Systems”), and delivering leading performance for the most demanding high compute intensive applications.

InfiniBand technology can be separated into three main pillars: connectivity, network, and communication. The connectivity pillar refers to the elements around the interconnect infrastructure such as topologies. The network pillar refers to the network transport and routing for example. And the communication pillar refers to co-design elements related to communication frameworks such as MPI, SHMEM/PGAS and more.

The Connectivity Pillar

InfiniBand was specified and designed as the ultimate software-defined network. One can define and manage complete routing schemes of the network from a centralized place, and everything is programmable. This advantage enables support for any interconnect topology and optimizes topologies to best fit the applications and workloads needs. Many of today’s supercomputers use the Fat Tree topology as it provides low latency and effectively supports a variety of applications. There are some Torus topologies in use, which best serve stencil applications. Other topologies including Hypercube, Enhanced Hypercube, Dragonfly+ and more are coming in the future.

Dragonfly+ is hybrid topology based on the conventional Dragonfly and extended using the properties of Fat Tree providing the benefit of both. It includes a Fully Progressive Adapting Routing technique, is more scalable than Dragonfly at the same cost, and able to provide the same or better throughput for equivalent Dragonfly and Fat Tree topologies under various traffic patterns (“Dragonfly+: Low Cost Topology for Scaling Datacenters,” Alexander Shpiner, Zachy Haramaty, Saar Eliad, Vladimir Zdornov, Barak Gafni and Eitan Zahavi).

Furthermore, the traditional Dragonfly presents performance limitations for adversarial traffic, as within a group, there is only one route from ingress switch to egress switch. Therefore, network bandwidth decreases with higher switch radix. The more ports on the switch, the lower the data throughput. InfiniBand Dragonfly+ includes multiple routes from ingress switch to egress switch, thereby delivering the highest data throughput. Moreover, due to its hybrid design, Dragonfly+ can simply be extended over time with no need to reroute any of the long cables—an advantage over Fat Trees and traditional Dragonfly networks.

Multi-Host technology enables multiple hosts to connect to a single interconnect adapter by separating the PCIe interface into multiple and independent interfaces, with no performance degradation. This results in lower total cost of ownership (TCO) in the data center by reducing CAPEX requirements from multiple cables, network adapters, and switch ports to only one of each, and by reducing OPEX by cutting down on switch port management and overall power usage.

The Network Pillar

InfiniBand is a pure offload interconnect, managing all network function and transport at the network level, and not imposing overheads on the CPU as other networks such as Ethernet or OmniPath. This results in more CPU cycles being dedicated to the applications and higher overall performance and scalability.

In many networks, a management software utility is responsible for receiving notifications of network errors and in order to modify network routes or change job scheduling to avoid the errors. But this can be time consuming—around 5 seconds for 1000 nodes and 30 seconds for clusters with 10000 or more endpoints—certainly not fast enough to ensure the seamless integrity of a running computation. In fact, no software mechanism can be responsive enough at very large scales to detect and fix fabrics that suffer from a link failure. To address this problem, InfiniBand includes a new and innovative solution called SHIELD (Self-Healing Interconnect Enhancement for Intelligent Datacenters), which takes advantage of the intelligence already built into InfiniBand switches. By providing the fabric with self-healing autonomy, the speed with which communications can be corrected in the face of a link failure can be sped up by 5000x. This is fast enough to save communications from expensive retransmissions or absolute failure.

The Communication Pillar

Mellanox Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)™ technology is included in the EDR and HDR InfiniBand switches. SHARP improves upon the performance of MPI operation by offloading collective operations from the CPU to the switch network, and eliminating the need to send data multiple times between endpoints. This innovative approach decreases the amount of data traversing the network as aggregation nodes are reached, and dramatically reduces the MPI operations time. Implementing collective communication algorithms in the network also has additional benefits, such as freeing up valuable CPU resources for computation rather than using them to process communication.

SHARP provides lower and flat latencies for data aggregation and reduction operations (e.g., MPI Reduce, All-Reduce, Barrier, Broadcast, etc.) compared to other options, so adding more nodes to compute clusters does not adversely affect. SHARP is also the best technology to enable the Exascale supercomputing generation.

Furthermore, SHARP provides key performance enhancement for deep learning and artificial intelligence applications. The combination of SHARP with leading GPUs and the NVIDIA Collective Communications Library (NCCL) deliver leading efficiency and scalability for example.

Another new technology is SNAP (Software-defined Network Accelerated Processing) which enables hardware virtualization of PCIe devices, such as NVMe storage. The NVMe SNAP framework allows users to easily integrate networked storage solutions into their high-performance compute and storage infrastructures. It enables the efficient disaggregation of compute and storage to facilitate fully-optimized resource utilization.

NVMe SNAP logically presents networked storage, such as NVMe over Fabrics (NVMe-oF), as a local NVMe drive. This allows the host operating system to use a standard NVMe-driver instead of a remote networking storage protocol. The host benefits from the performance and simplicity of local NVMe storage, unaware that remote InfiniBand connected storage is being utilized and virtualized by NVMe SNAP.

Furthermore SNAP may apply sophisticated logic and data protection mechanisms (mirroring, compression, data-deduplication, thin-provisioning, encryption, etc.) to the network storage that it virtualizes as local NVMe.

Super-Connecting the #1 Supercomputers

By providing leading data throughput, extremely low latency, and, most importantly, In-Network Computing engines and full programmability, InfiniBand is the leading interconnect technology for compute intensive applications, high performance computing, deep learning and other applications. InfiniBand overtakes proprietary networks and accelerates many of the top supercomputers around the world.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Quinn in a presentation delivered to the 79th HPC User Forum Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watch. McVeigh shares Intel's plans for the year ahead, his pers Read more…

AWS Solution Channel

Shutterstock 152995403

Bayesian ML Models at Scale with AWS Batch

This post was contributed by Ampersand’s Jeffrey Enos, Senior Machine Learning Engineer, Daniel Gerlanc, Senior Director for Data Science, and Brandon Willard, Data Science Lead. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 261863138

Using Cloud-Based, GPU-Accelerated AI for Financial Risk Management

There are strict rules governing financial institutions with a number of global regulatory groups publishing financial compliance requirements. Financial institutions face many challenges and legal responsibilities for risk management, compliance violations, and failure to catch financial fraud. Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Intel CPUs and GPUs across multiple partitions. The newly reimag Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watc Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

D-Wave Debuts Advantage2 Prototype; Seeks User Exploration and Feedback

June 16, 2022

Starting today, D-Wave Systems is providing access to a 500-plus-qubit prototype of its forthcoming 7000-qubit Advantage2 quantum annealing computer, which is d Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Covid Policies at HPC Conferences Should Reflect HPC Research

June 6, 2022

Supercomputing has been indispensable throughout the Covid-19 pandemic, from modeling the virus and its spread to designing vaccines and therapeutics. But, desp Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire