ISC Keynote: The Algorithms of Life – Scientific Computing for Systems Biology

By John Russell

June 19, 2019

Systems biology has existed loosely under many definitions for a couple of decades. It’s the notion of describing living systems using first-principle physics and mathematics to capture life in equations that are both descriptive and predictive – and let’s add productive by which we mean being able to deliver therapies (drugs et. al) to enhance health and fight disease.

Doing that has proven difficult at best and disappointing at worst as even a cursory glance at the state of healthcare reveals; that’s notwithstanding many marvelous breakthroughs such as sequencing the human genome and the steady chipping away at functional genomics (and other ‘omics) to understand better how DNA informs what we become.

Ivo Sbalzarini

With apologies to ISC organizers I’ve stolen the name of the opening keynote by Ivo Sbalzarini –  The Algorithms of Life – Scientific Computing for Systems Biology – for the headline of this article in an attempt to capture his expansive presentation. Thanks also to Sbalzarini for providing a few of his slides.

Given all we know today and the steady gush of experimental data from modern instruments, what we are missing, said Sbalzarini, are the algorithms to make sense of it all. Having poked away at this problem for nearly as long as it has been around, Sbalzarini presented a sweeping approach to digging out those algorithms by capitalizing on recent advances in imaging technology, immersive virtual/augmented reality, a sophisticated analysis approach that leverages particle-mesh mathematics and which has been built into a software platform (OpenFPM), and lastly, no surprise, the steadily growing power of HPC.

 

As in many important life sciences advances the ‘lowly’ fruit fly took center stage. In this instance the analysis was to investigate a dysregulation in embryogenesis – specifically the failure of tissue to fold properly. In the end, the researchers identified the DNA influence, the chemical environment influence, and the mechanical environment influence, and delivered a predictive understanding of the embryo’s tissue response. Lest you think this is old work, it was presented last week at the New York Scientific Data Summit.

Getting from Sbalzarini’s early nascent research 15 years ago to the impressive results (and tool suite) presented is a long journey. We’ll summarize as practical but the ISC is likely to archive its keynote; for biologists it is well worth watching.

Advanced imaging, such as light sheet microscopy, now makes it possible to observe life science phenomena in 3D and great detail at the cellular and intracellular level.

“We can image an embryo from the time it is a fertilized to the time it moves out of the microscope field by itself and continues its life. When we image the fruit fly embryo over the 72 hours of development, we gather 180 TB of image data. If you would like to visualize that in real-time. That means a rendering performance or a rendering throughput in real-time of about 1.8 Gigapixels per second,” said Sbalzarini[i]. A key advantage here is the animal stays alive unlike older approaches requiring stains and fixing.

Hardly just pretty pictures, the extensive image data captured (and visualizations possible) are the raw input for building hypotheses and predictive models. The other primary driver is Sbalzarini clever adaption of particle-mesh technology to convert the data into actionable, in silico simulation. Underlying HPC infrastructure, of course, is the engine without which the whole process would grind to a halt.

“The numerical methods are particle methods or hybrid particle mesh methods. They comprise an interesting class of numerical methods. They discretize the system by particles, so if you have a complex geometry, you don’t need to generate the mesh for the simulation, but you simply fill the geometry with particles that store the variables; there can be a mesh in addition in order to do far field equations in order to compute for example forces for far field equations, for example,” he said.

“This is a classic framework of particle-mesh methods to solve partial differential equations, but particle methods as an algorithm are much more general than that. I would define everything as a particle method that is composed of dots of zero dimension elements that are characterized by a position in some space and some properties that they carry. Such an algorithm can be used to solve partial differential equations where the particles are the colocation points of your various discretization and they store the values of the field at that position.”

He adds quickly, “There is nothing that limits us to having particles interacting in a deterministic fashion and this then also allows us to solve stochastic different equations, numerically or to perform agent based simulation or agent based modeling.”

Building the computational tools to deliver these models has been a challenging and lengthy task for which Sbalzarini is well-qualified. He is the chair of scientific computing for systems biology on the faculty of computer science of TU Dresden, as well as the faculty of mathematics, and director of the TUD-Department in the Center for Systems Biology Dresden. He also is a permanent Senior Research Group Leader with the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden.

Leaving out many details and with regrets for over-simplification, Sbalzarini and colleagues imaged the fruit fly embryo; used machine learning to identify ‘algorithms’, converted the data and algorithms into models based on particle-mesh approaches using their home-developed platform; ran computational experiments to test their hypotheses; and used immersive visualization technology as a step to allow researchers to see the real process and simulations unfold. “It is possible to walk around inside the simulation,” he said. Informed by what they saw and their knowledge, researchers tweaked parameters and hypotheses, iteratively converging on a solution.

“To me it is a very nice example of how HPC and these numerically intricate simulations that we can do with these machines allow us to bridge really from the molecular scale to the tissue scaler in order to explain how things work and in order to propose remedies,” said Sbalzarini.

Sbalzarini reminded the audience living systems are computing machines themselves, “[A fruit fly embryo] is a massively parallel and fully self-organized system in which we can view every single cell as a processing element that executes programs. [It’s a] highly interconnected computer and able to solve NP hard problems with billions or hundreds of billions of processing elements. We know a lot about the hardware of this computer – the proteins, the molecules, the lipids, the fats out of which this computer is made – and thanks to sequencing technology, [we’re] able to read the source code of this computer, which is the genomic sequence. However we have no idea what algorithms this source code implements on his hardware.”

Now, advanced imaging and machine learning capabilities are catalyzing researchers’ ability to identify ‘mechanistic’ guidelines and incorporate traditional formulations (ODEs/PDEs) of physics laws and mathematics into the life sciences tool box. Chemical diffusion. Fluid dynamics. EMI influences. Activation energy thresholds. These are the kinds of attributes that can be captured in particle-mesh models.

When Sbalzarini began his studies in earnest, he used an NEC SX-5 with 512 processors housed at CSCS (Swiss Supercomputer Center). In 2005 that became a Cray XT-3 with 1664 processors. A lot has changed since. The first iteration of the system biology software platform his team developed was Parallel Particle Mesh Library (PPM) written in Fortran 90 many years ago.  It served as layer between MPI and Client Applications for simulations of physical systems using Particle-Mesh methods. The PPM library runs on single and multi-processor architectures, and handles 2D and 3D problems.

“The PPM library had two parts, what we call the PPM core, which is implemented in all the communication primitives, the load balancing, the file IO, [and] the distributed data structures. And the PPM numerics using frequently used numerical solvers; it does this in part by using the abstractions from the core and in part by renting third party libraries such as PETSc or FFTW. On top of PPM there is a domain specific programming language called PPM Language which provides a reasonably simple way of coding PPM but you could also directly interface with the Fortran API,”

PPML used overloading and generic interfaces and provided for the limitations of the important routines for different hardware platforms such as vector processors, like the NEC system, shared memory, distributed memory, even single processor systems, said Sbalzarini.

It was a beast to maintain. “Because of overloading the amount of source code in the PPM library was huge, several millions of lines of code that needed to be maintained here and ported. What we liked about PPML was the abstraction on which it is based. It’s a set of abstract data types and abstract operators for computing that are in our opinion the most coarse-grained abstractions possible that still cleanly separate computation from communication. So in PPM an abstraction would either only compute but not incur any communication overhead or it would only communicate but not do any computation,” he said.

Five years ago the platform was upgraded, “We decided to keep the abstractions, to keep the definitions of the data types and the operators, but now implement a C++ library which is called OpenFPM (Open Framework for Particle Method Library) and make use of template metaprogrammingin C++ for compiled time code generation. OpenFPM can do much more than PPM, for example it can do simulations in arbitrary dimensional spaces where PPM is limited to 2D and 3D. OpenFPM allowed particle properties to be objects of any C++ that the user can define and all the communication and file IO will work for it,” he said.

Adopting template metaprogramming reduced the amount of code needed to “about a factor of ten less complexity than the PPM.”

Sbalzarini presented many more details in his rich talk. It will be interesting to watch how widely OpenFPM is used and if it gains tractions in other domains. Ease of use is a key question for many biomedical researchers and clinicians. Sbalzarini said, “This hopefully makes HPC so easy to use that every science-based application in biology, in computational biology, and also in other fields can benefit.”

That said computer expertise, particularly HPC expertise, has historically been lacking in life science although that is changing and fairly quickly.

The main motivation is to understand biology and to understand how cells form tissues, and eventually to be able to provide novel explanations for disease phenotypes and maybe therapies for disease, said Sbalzarini. Nevertheless, “For us as computer scientists it’s also just a lot of fun because what we do combines several technologies that we think are fun to work with, technologies like virtual reality, HPC, massively scalable software systems, building microscopes and playing with optics, or using and developing artificial intelligence and learning algorithms to interface with the living things in the microscope.”

[i]Some quotes have been very lightly edited to improve readability.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, some of the apps, like SWIFT and OpenFOAM, really pushed the st Read more…

By Dan Olds

Portugal Launches Its First Supercomputer

July 12, 2019

Portugal has officially inaugurated its first-ever supercomputer. The unassumingly named “Bob” supercomputer is housed in the Minho Advanced Computer Center (MACC) at the University of Minho.  Bob was announced i Read more…

By Oliver Peckham

What’s New in HPC Research: Traffic Simulation, Performance Variations, Scheduling & More

July 11, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

How AI Powers Up Data Management and Analytics

Companies are making more decisions based on data. However, the ability to intelligently process the growing volume of data is a bottleneck to extracting actionable insights. Read more…

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered servers for AI workloads, has expanded the program beyond th Read more…

By Doug Black

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

ISC19 Cluster Competition: HPCC Deep Dive

July 7, 2019

The biggest benchmark the student warriors tackled during the ISC19 Student Cluster Competition was the colossal HPC Challenge. This is a collection of benchmar Read more…

By Dan Olds

OLCF Bids Farewell to Its Titan Supercomputer

July 4, 2019

After seven years of faithful service, and a long reign as the United States' fastest supercomputer, the Cray XK7-based Titan supercomputer at the Oak Ridge Lea Read more…

By Staff report

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This