Summit Achieves 445 Petaflops on New ‘HPL-AI’ Benchmark

By Oliver Peckham

June 19, 2019

Summit — the world’s top-ranking supercomputer — has been used to test-drive a new mixed-precision Linpack benchmark, which for now is being called HPL-AI.

Traditionally, supercomputer performance is measured using the High-Performance Linpack (HPL) benchmark, which is the basis for the Top500 list that biannually ranks world’s fastest supercomputers. The Linpack benchmark tests a supercomputer’s ability to conduct high-performance tasks (like simulations) that use double-precision math. On June’s Top500 list, announced Monday, Summit’s 148 Linpack petaflops land it first place by a comfortable margin.

Using that same machine configuration, Oak Ridge National Laboratory (ORNL) and Nvidia have tested Summit on HPL-AI and gotten a result of 445 petaflops.

A different kind of benchmark

The Summit supercomputer at Oak Ridge National Laboratory (Credit: ORNL)

While the HPL benchmark tests supercomputers’ performance in double-precision math, AI is a rapidly growing use case for supercomputers — and most AI models use mixed-precision math.

The HPL-AI benchmark is specifically designed to bridge this gap in evaluation, complementing — rather than supplanting — the traditional HPL approach. Based on the HPL standard, HPL-AI adds mixed-precision calculations to evaluate AI model performance.

“Mixed-precision techniques have become increasingly important to improve the computing efficiency of supercomputers, both for traditional simulations with iterative refinement techniques as well as for AI applications,” said Jack Dongarra, who introduced Linpack in the late 1970s. “Just as HPL allows benchmarking of double-precision capabilities, this new approach based on HPL allows benchmarking of mixed-precision capabilities of supercomputers at scale.”

Reaching new peaks of performance

Jack Dongarra presenting on the results at ISC 2019 (June 19, 2019)

Nvidia and ORNL tested the HPL-AI benchmark on Summit. The behemoth supercomputer — built by IBM, Mellanox and Nvidia and equipped with 9,216 IBM Power9 CPUs and 27,648 Nvidia Volta V100 GPUs — blazed through the computations, completing the test in half an hour (compared to its 90-minute HPL run). Its performance was rated at 445 petaflops — nearly half an exaflops, and triple Summit’s 148 petaflops performance on HPL.

This benchmark marks a few significant accomplishments — one, of course for Summit; another for GPU-based supercomputing; and a third for the HPC-AI benchmark itself.

“Ever since the delivery and installation of our 200-petaflops Summit system — which included the mixed-precision Tensor Core capability powered by Nvidia’s Volta GPU — it has been a goal of ours to not only use this unique aspect of the system to do AI but also to use it in our traditional HPC workloads,” said Jeff Nichols, associate laboratory director at ORNL. “Achieving a 445 petaflops mixed-precision result on HPL (equivalent to our 148 petaflops [double-precision] result) demonstrates that this system is capable of delivering up to 3x more performance on our traditional and AI workloads. This gives us a huge competitive edge in delivering science at an unprecedented scale.”

Nvidia is hoping that the HPC-AI benchmark can become a new, complementary standard for the supercomputing industry, much like the Green500 list became a standard measure of efficiency.

“Today, no benchmark measures the mixed-precision capabilities of the largest-scale supercomputing systems the way the original HPL does for double-precision capabilities,” wrote Ian Buck, general manager and vice president of Accelerated Computing at Nvidia. “HPL-AI can fill this need, showing how a supercomputing system might handle mixed-precision workloads such as large-scale AI.”

In a blog post, Buck highlighted several use cases (included below) for which scientists are turning to mixed-precision supercomputing.

Nuclear fusion

Nuclear fusion is effectively replicating the sun in a bottleWhile it promises unlimited clean energy, nuclear fusion reactions involve working with temperatures above 10 million degrees Celsius. They’re also prone to disruptions — and tricky to sustain for more than a few seconds. Researchers at ORNL are simulating fusion reactions so that physicists can study the instabilities of plasma fusion, giving them a better understanding of what’s happening inside the reactor. The mixed-precision capabilities of Tensor Core GPUs speed up these simulations by 3.5x to advance the development of sustainable energy at leading facilities such as ITER.

Identifying new molecules

Whether it’s to develop a new chemical compound for industrial use or a new drug to treat a disease, scientists need to identify and synthesize new molecules with desirable chemical properties. Using NVIDIA V100 GPUs for training and inference, Dow Chemical Company researchers developed a neural network to identify new molecules for use in the chemical manufacturing and pharmaceutical industries.

Seismic fault interpretation

The oil and gas industry analyzes seismic images to detect fault lines, an essential step toward characterizing reservoirs and determining well placement. This process typically takes days to weeks for one iteration — but with an NVIDIA GPU, University of Texas researchers trained an AI model that can predict faults in mere milliseconds instead.


Tiffany Trader contributed to this report.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

Google’s ML Compiler Initiative Advances

September 12, 2019

Machine learning models running on everything from cloud platforms to mobile phones are posing new challenges for developers faced with growing tool complexity. Google’s TensorFlow team unveiled an open-source machine Read more…

By George Leopold

HPC Perspectives with Dr. Seid Koric

September 12, 2019

Brendan McGinty, director of Industry for the National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana-Champaign, kicks off the first in a series of pieces profiling leaders in high performance computing (HPC), writing for the... Read more…

By Brendan McGinty

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Building a Solid IA for Your AI

The journey to high performance precision medicine starts with designing and deploying a solid Information Architecture that addresses the spectrum of challenges from data and applications that need to be managed and orchestrated together to empower workloads from analytics to AI. Read more…

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have used the most cycles and typically drove hardware and softwa Read more…

By Elizabeth Leake

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially la Read more…

By Tiffany Trader

MIT Prepares for Satori…and a New 2 Petaflops Computer Too

August 27, 2019

Sometime this fall, MIT will fire up Satori – an $11.6 million compute cluster donated by IBM and coinciding with the opening of the MIT Stephen A. Schwarzma Read more…

By John Russell

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This