ISC Keynote: Thomas Sterling’s Take on Whither HPC

By John Russell

June 20, 2019

Entertaining, insightful, and unafraid to launch the occasional verbal ICBM, HPC pioneer Thomas Sterling delivered his 16th annual closing keynote at ISC yesterday. He explored, among other things: exascale machinations; quantum’s bubbling money pot; Arm’s new HPC viability; Europe’s suspect plans (at least by Sterling) for a home-grown processor; HPE and Nvidia’s gobbling up of Cray and Mellanox; and even provided a tongue-in-cheek machine learning tutorial.

Thomas Sterling, ISC 2019 (photo credit: ISC)

Indeed, Sterling’s whirlwind sweep through the HPC landscape at ISC is always an adventure that prompts much laughter and a few cringes.

  • On the delayed Aurora project. “The Department of Energy in its infinite wisdom, had a very good team, Intel and Cray and other contributors, [and] did the obvious and right thing when the Aurora project failed. They gave the same people a much bigger budget with a much bigger objective, 1 exaflops, and in shorter time. That’s a winning formula for me.”
  • On China’s exascale plans. “My intent was to tell you China had selected its first exascale machine [and] it was going to be the Tianhe 3 and that this was a picture of the prototype,” said Sterling showing a slide. He learned otherwise at a very recent meeting with computer scientists from Asia. “What’s wrong with this is that it is all wrong. First, China has not decided what its number one machine will be; two and three, they said this is not a Tianhe and indeed [it’s] a Sunway machine. But it’s a nice picture.”

Obviously he had more to say about China’s ambitions but his willingness to absorb as well as to deliver barbs has proven to be a winning approach over the years, often saying publicly what others are murmuring behind closed doors.

Sterling made his presentation while seated, still recovering from recent surgery, but not lacking in zest. Sterling is best known as the “father of Beowulf” for his pioneering research in commodity/Linux cluster computing for which he shared the Gordon Bell Prize in 1997. Currently he professor of intelligent systems engineering at the Indiana University (IU) School of Informatics, Computing, and Engineering and also serves as the PI of the Continuum Computing Architecture Project at the Department of Intelligence Systems Engineering.

Presented here are a few of his slides and comments. Let’s start with the race to exascale which has dominated the high-end of HPC the last few years. While regional rivalries and the desire for competitive advantage are often used to characterize the race, Sterling said, “In my opinion this is about the expansion of the field and internationalizing of the ability of HPC for science and engineering and industry and commerce. [It’s] not about a competition.”

The global rising tide of powerful systems will raise all boats, he suggests. China may be the furthest along though the precise timetable for standing up an exaflops machine is unclear. NUDT has built a prototype system. “[It has] 512 nodes with the matrix 2000+ socket chip and this will be replaced by the matrix 3000 in preparation for whenever it delivers and exascale machine. It is an engineering wonder and really explains why the Asian community is doing so well in this field,” said Sterling.

Japan’s big recent news is around Fugaku (previously the post-K machine) which is based on Arm technology. “[It is] using Arm but only in the instruction set architecture. The actual core design is unique and new to Japan and Fujitsu and is combined with an integrated accelerator, the SVE, which is 512 bits wide,” said Sterling.

“Ever since the Earth Simulator, which of the gray beards here will remember, was stood up and was about 40 teraflops and horrified those of us in the west that suddenly woke up and realized we didn’t own the entire technology space. Jack Dongarra was quoted (in the New York Times) calling this “Computnik.” [Ever since then] the Japanese have constantly developed and deployed truly balanced architectures making it a little overkill with the communication and the bandwidth and low latency enhanced at expense for better balanced machines. [Fugaku] will be delivered midway 2021,” he said.

Fugaku will have a TOFU-D 6D toroidal mesh. “I hate Tofu (the food),” said Sterling as an aside, but in this case “it stands for toroidal fusion, and once again confers a tremendous amount of integral bandwidth to the future machine. This will be a major contributor to the field.”

He had praise and disappointment for the U.S. effort to reach exascale computing. The Exascale Computing Project (ECP) focused on developing needed software technology and adapting applications got some love from Sterling. So did recent leadership-class, pre-exascale machines, Summit and Sierra. Not so much for Aurora, being built by Intel and Cray, which has been delayed and is now scheduled to be the first U.S. exascale machine (possibly; Frontier at Oak Ridge has a competitive timeline).

So much has already been said about Aurora. Sterling glibly noted it was DOA but quickly added machines sometimes fail and that’s part of progress and not to be excessively dwelled upon. Not much is known about the forthcoming Aurora. It will leverage Cray’s new Shasta design and Slingshot technology; use and Intel CPU and an Intel GPU about which very little is known; and be deployed at Argonne National Laboratory.

Tongue-in-cheek, Sterling said, “It will be truly leading edge one way or the other, [but] I don’t know if it will be the back edge or the front edge. I should be giving credit to Intel and Cray…Xeons will be there. Some will be fat, some will be skinny, and then there’s a three-letter acronym that will be included. As far as I could tell this will not be anything like the original Aurora machine but we will all find out in a little while. This is a general purpose machine; that’s very important, for simulation, streaming data analytics, machine intelligence.”

He notes some ideas about what might be in Aurora eventually and indicated they seemed reasonable.

Sterling acknowledged Europe’s steady progress in building out its HPC infrastructure and relative success working closely with industry. He also acknowledged it’s in a bit of bind: “The truth is the European community has a very important problem to solve. This is [that] they are a consumer of about 30 percent of the worldwide HPC yet they bring in only about three percent of the [revenue]; this is clearly an unbalanced business model and has to be addressed and resolved.”

Sterling wasn’t optimistic about current plans to build a home-grown advanced processor. It is a “goal for which they are ill prepared and that is not only to develop a new processor for HPC and exascale but rather to do so with an experience base with which they have developed no such processors in the last ten years,” he said.

One take home idea, he suggested, was that HPC is splitting into two distinct communities that serve different purposes: one advances the state of the art in technology and the other doing the science and engineering in industry, academia, and commerce using that technology.

It’s not surprising quantum computing got so much attention. As he pointed out there is a significant amount of government and private money pouring into quantum computing, a la the U.S. $1.25B Quantum Initiative.

“Here’s an area that is, frankly, really speculative, and yet the world has constructively and appropriately come together to make a bet, to project its hope for the future,” he said. It’s probably safe to infer he wonders a bit about how quickly quantum computing will become a practical tool. That said, there’s a global race for QC afoot and what seems like a sudden gush of funding.

Right now it’s not clear what the winning qubit technology will be. Semiconductor-based superconducting technology is the dominant track but others are emerging. Much of the ongoing work isn’t on qubit technology but on software – the algorithms and programming environment models. Many of those most active QC companies, he noted, are making their technology available by the web.

“[It’s] truly an outreach to users, partly to educate us and partly to provide feedback to them about where the field has to evolve,” said Sterling. He poked a little fun at the notions of quantum supremacy and quantum dominance as marketing driven.

“The Japanese are also investing significantly in QC,” said Sterling. “The second bullet (slide below) says they are slow to bring this to fruition. This is true but it also might be the right strategy. The Japanese involving major industry partners across Japan which are in the search phase, not rushing too much to jump on any particular [technology] but continuing to evolve their perception of the possibilities, the most promising paths. So it may be the slow and steady wins the race here. We can only wait and see.”

Least is known about China’s quantum computing efforts. It is planning a massive single center in which to drive its quantum efforts. “The center for quantum science should be open about a year from now. There is already significant work with the Chinese Academy of Science,” he said. It will be interesting to watch how quickly China’s centralized efforts progress versus the U.S.’s very diverse efforts encompassing academia and private enterprise.

Capturing the full scope of Sterling’s comments is beyond this short article. ISC will likely make the recorded version available. He spent some time paying tribute to recent HPC award winners as he usually does.

In summary, Sterling is fond of picking an event in science that was enabled by HPC and marks a significant breakthrough. This year he chose the imaging of a black hole at the center of NGC 4486, a galaxy much larger than the Milky Way and with five times as many stars.

“Black holes, outside of science fiction, are confusing, badly modeled, and there is still some reticence to fully embrace it. Until now. A very large collaboration involving both HPC and eight major microwave antennas has been collecting data for more than a year and processing that data,” he noted. The results, of course, were stunning images of the event horizon around the black hole.

On to ISC2020

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Portugal Launches Its First Supercomputer

July 12, 2019

Portugal has officially inaugurated its first-ever supercomputer. The unassumingly named “Bob” supercomputer is housed in the Minho Advanced Computer Center (MACC) at the University of Minho.  Bob was announced i Read more…

By Oliver Peckham

What’s New in HPC Research: Traffic Simulation, Performance Variations, Scheduling & More

July 11, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered servers for AI workloads, has expanded the program beyond th Read more…

By Doug Black

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

How AI Powers Up Data Management and Analytics

Companies are making more decisions based on data. However, the ability to intelligently process the growing volume of data is a bottleneck to extracting actionable insights. Read more…

Quantum Start-up Rigetti Acquires QxBranch; Bolsters App Dev Capability

July 11, 2019

Quantum startup Rigetti Computing announced today it acquired QxBranch, a quantum computing and data analytics software startup. The latest move marks what has been a busy year for Rigetti. Roughly one year ago, it annou Read more…

By John Russell

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

ISC19 Cluster Competition: HPCC Deep Dive

July 7, 2019

The biggest benchmark the student warriors tackled during the ISC19 Student Cluster Competition was the colossal HPC Challenge. This is a collection of benchmar Read more…

By Dan Olds

OLCF Bids Farewell to Its Titan Supercomputer

July 4, 2019

After seven years of faithful service, and a long reign as the United States' fastest supercomputer, the Cray XK7-based Titan supercomputer at the Oak Ridge Lea Read more…

By Staff report

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

Intel Partners with Baidu on Neural Network Training Chip

July 2, 2019

A pillar of Intel’s emerging AI product portfolio, its upcoming Nervana Neural Network Processor for training (NNP-T), will be a collaborative development eff Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour


Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This