Is Weather and Climate Prediction the Perfect ‘Pilot’ for Exascale?

By Oliver Peckham

June 21, 2019

At ISC 2019 this week, Peter Bauer – deputy director of research for the European Centre for Medium-Range Weather Forecasts (ECMWF) – outlined an ambitious vision for the future of weather and climate prediction. For Bauer, weather and climate prediction isn’t just an application for exascale — it might be the application: the use case with the greatest challenges – and the greatest potential to showcase the power of exascale computing.

Peter Bauer presents at ISC 2019.

Bauer didn’t linger on the obvious – that now, more than ever, climate and weather prediction have tremendous economic and life-threatening stakes; that predictive failures enable an ongoing and “staggering” loss of life and property. (“So,” Bauer said, “it’s really important.”)

Instead, he pressed on to the core question. “Despite us being high-tech, we have these significant shortcomings. What do we do about it?”

Obstacles

Bauer stressed the scale of the task: weather and climate prediction posed a multi-physics, multi-scale geophysical fluid dynamics problem that needed to incorporate vegetation and a slew of other complicating variables. “Our requirement,” he concluded, “is of the order of a thousand [times] what we are able to do now.” This requirement, he explained, extended to both high-performance computing and data management resources. Weather and climate modeling needed the exascale era.

But this orders-of-magnitude leap in resources is only one of the problems. Due to coding inefficiencies, current weather and climate prediction models only reach about 5 percent efficiency on supercomputers, placing the sector even further away from “true exascale.”

Moreover, the modeling needs don’t stop at accurate atmospheric prediction. “Think of a heat wave or drought that we had last year, for example, in Europe,” Bauer said. “You immediately have to think, if there’s vegetation stress — forest fires; air pollution; impact on human health. So this entire value chain of applications is important as well and needs to be integrated.”

“It’s not just a weather forecast model,” he continued. “It’s really an earth and society forecast model that eventually needs to address these challenges and, again, this has a footprint on technology.”

Homework

Bauer then turned an eye inward toward the weather and climate prediction community. “Have we done our homework?” he asked.

The question, of course, was mostly rhetorical.

Bauer elaborated on the many “inventive” paths the community had taken to maximize returns, despite their resource and coding limitations: parallelizing and vectorizing codes for CPUs; investing in mixed-precision, concurrency, and parallel I/O; dissecting code and analyzing subcomponents; machine learning for surrogate modeling; GPU and FPGA code trials; and more.

Ongoing weather and climate prediction community efforts. Image courtesy Peter Bauer/ISC 2019.

Bauer also highlighted how weather and climate prediction researchers had come together as a community, working to ensure that tools, science and algorithms were complementary and engaging with large-scale organizations that had clear and productive goals.

The path forward

To move meaningfully forward, Bauer argued, would require an active, fundamental shift in the weather and climate modeling landscape. “After all the struggles that we have seen over the last decade or so,” he said, “I think we understand that we will never gain effective value from just sitting around and waiting for a solution.”

Bauer presented a solution roadmap in two categories: “algorithms and codes” and “data handling and workflows.” For the most part, the two categories shared solutions – “do less,” “do it cheaper,” “do it on new technology” and “do it yourself.” Bauer broadly recommended streamlining the data workflow using a “generic approach to data structures” to ensure that data was flexible and efficient, as well as using precision, concurrency, and machine learning to reduce resource use.

Regarding precision, Bauer had particularly strong thoughts. “I think single-precision is done,” he said, indicating successfully so. “When I say mixed precision, I will go even harder; you can ask other certain parts of your algorithms that actually favor half-precision or different types of standard-precision standards.”

As for “do it yourself”? “There are no generic solutions,” Bauer explained, “For the part in the middle – the separation of concerns between the top level of algorithmic layers and a diverse range of hardware to which you might want to delegate all your different problems.”

Bauer also highlighted the value of a number of other improvements: code translation for different types of interfaces, data workflow resilience, object-based data storage and more.

In terms of ongoing approaches, Bauer shone a spotlight on ExtremeEarth — a European program designed to “revolutionize Europe’s capability to predict and monitor environmental extremes and their impacts on society,” built on an integration of edge and exascale computing — but lacking sufficient funding.

A pilot demonstration for exascale computing

Bauer presented a question: “exascale systems present a vision for weather and climate prediction – can we meet the challenges?” But then, he said, he started to look at it differently. He posed a new question: “weather and climate prediction present a vision for exascale systems – can we meet the challenges?”

“I think,” Bauer mused, “we’re actually a pilot demonstration for an exascale system.”

“First, we have world science leadership, certainly in Europe – but in other places as well – where we also have technology leadership,” he explained. “It’s obvious, needless to say, that weather and climate have outstanding socioeconomic impacts … and that urgent action is needed. The response to climate change impacts can’t wait for 20 years until we have another generation of supercomputers – we need to find solutions now.”

The exascale goal, Bauer stressed, ties into all of this – from the hardware to the machine learning to the data handling – and the well-integrated weather and climate modeling community was prepared to put in the work. “I think we’re very ready to embrace new technologies,” he said. “I think we’re actually ready to redesign our applications top to bottom.” This way, weather and climate modeling could serve as a pilot that demonstrated the massive value of exascale systems.

“We’re ready,” he said, matter-of-factly. “And weather and climate is the perfect application for exascale.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire