Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

By John Russell

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it has partnered with a Japanese QC consulting start-up, Sigma-i, to help prime the QC pump. Last week IBM, with Japan-based colleagues, reported advances in simulating lithium-oxide reactivity such that could help advance battery technology. But first, have you heard of Neven’s Law?

Coined for Hartmut Neven, director of the Google Quantum Artificial Intelligence lab – Neven’s Law, among other things, predicts QC will achieve quantum supremacy soon, perhaps 2019. A good article in Quanta Magazine and reprinted in Scientific American tells the story.

Here’s a brief excerpt:

“The doubly exponential rate at which, according to Neven, quantum computers are gaining on classical ones is a result of two exponential factors combined with each other. The first is that quantum computers have an intrinsic exponential advantage over classical ones: If a quantum circuit has four quantum bits, for example, it takes a classical circuit with 16 ordinary bits to achieve equivalent computational power. This would be true even if quantum technology never improved.

“The second exponential factor comes from the rapid improvement of quantum processors. Neven says that Google’s best quantum chips have recently been improving at an exponential rate. (This rapid improvement has been driven by a reduction in the error rate in the quantum circuits. Reducing the error rate has allowed the engineers to build larger quantum processors, Neven said.) If classical computers require exponentially more computational power to simulate quantum processors, and those quantum processors are growing exponentially more powerful with time, you end up with this doubly exponential relationship between quantum and classical machines.”

Apparently, the rule began as an in-house observation before Neven mentioned it in May at the Google Quantum Spring Symposium where he said that quantum computers are gaining computational power relative to classical ones at a “doubly exponential” rate. We’ll defer further sketching of his argument till later in the article. Not everyone (no surprise) agrees with Neven but Google definitely has earned credentials in this space.

RISE OF QC CONSULTANTS: D-WAVE PARTNERS WITH SIGMA-I

D-Wave 2000Q System

First up is D-Wave, which yesterday announced forming a partnership with Sigma-i, a spin-out from Tohoku University. Sigma-i is touted as a “company formed to optimize the world with quantum computing technologies.” Might as well have stretch aspirations. Sigma-i is one of an emerging class of quantum computing consultants. In this instance its expertise is in quantum annealing

“In Japan, many companies look forward to the real-world applications that quantum computing can and will bring,” said Masayuki Ohzeki, CEO of Sigma-i. “This contract couples our quantum expertise with D-Wave’s powerful quantum computing systems, bridging the gap between industry and academia, and ushering in a new era of quantum computing in Japan.”

D-Wave labeled its partnership with Sigma-i as “the biggest commercial, global quantum deal to date – [and] will power increased access to commercial quantum computing systems, paving the way towards a practical quantum future” but didn’t precisely explain what that encompasses. Sigma-I’s roots seem to be part of the Tohoku University Quantum Annealing Research Development (T-QARD) project. Two key Sigma-i offerings include:

  • Application development. Sigma-i will consult with commercial, research and educational institutions in Japan to help them build quantum applications. No mention is made of whether Sigma-I will develop applications (IP) of its own
  • Access D-Wave’s “Cloud”. Sigma-i will act as a sort of concierge ‘portal’ for access to D-Wave’s 2000Q family of products through Leap (cloud platform). It’s unclear if broad training is also offered.

D-Wave says the Sigma-i team is deeply knowledgeable about how to program the D-Wave system and will offer consulting services, “including coding best practices and embedding problems onto the D-Wave system.” In April, Tohoku, D-Wave, and automotive manufacturer Denso reported developing a new algorithm to segment certain problem types into sub-problems more readily solved on the D-Wave system.

“This contract signals the ongoing growth of our cloud business and the increasing interest in quantum computing worldwide,” according to Vern Brownell, CEO of D-Wave. Back in February, D-Wave announced an 18-month technology roadmap featuring a new underlying fab technology, reduced noise, increased connectivity, 5000-qubit processors, and an expanded toolset for creation of hybrid quantum-classical applications. (See HPCwire article, D-Wave Previews Next-Gen Platform; Debuts Pegasus Topology; Targets 5000 Qubits)

IBM-MITSUBISHI PAPER PUSHES NISQ CAPABILITY

A rendering of IBM Q System One, the world’s first fully integrated universal quantum computing system, currently installed at the Thomas J Watson Research Center. Source: IBM

Last week, IBM and Mitsubishi Chemical reported they had simulated the initial steps of the reaction mechanism between lithium and oxygen in Li-air batteries – the first research of its kind to have been simulated on a quantum computer. Their paper (Computational Investigations of the Lithium Superoxide Dimer Rearrangement on Noisy Quantum Devices) was posted on arXiv last week.

Quantum chemistry has long been a prime target for quantum computing. The new work introduces a method for reducing the complexity of the calculation. Here’s the abstract:

“Currently available noisy intermediate-scale quantum (NISQ) devices are limited by the number of qubits that can be used for quantum chemistry calculations on molecules. We show [the] number of qubits required for simulations on a quantum computer can be reduced by limiting the number of orbitals in the active space. Thus, we have utilized ansätze that approximate exact classical matrix eigenvalue decomposition methods (Full Configuration Interaction).

“Such methods are appropriate for computations with the Variational Quantum Eigensolver algorithm to perform computational investigations on the rearrangement of the lithium superoxide dimer with both quantum simulators and quantum devices. These results demonstrate that, even with a limited orbital active space, quantum simulators are capable of obtaining energy values that are similar to the exact ones. However, calculations on quantum hardware underestimate energies even after the application of readout error mitigation,” according to the paper.

In the recent work, researchers demonstrate the reduction of orbitals used in the calculation to just the “highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) of the stationary points can effectively reduce this problem down to two qubits for the investigation of the complete mechanism of this rearrangement reaction.” The paper is best read in full.

This joint research was made possible through the IBM Q Network Hub at Keio University in Japan. IBM reports, “Only one year into the collaboration, the hub of IBM, Keio, Mitsubishi Chemical, Mitsubishi UFJ Financial Group, and Mizuho Financial Group has not only made progress in practical battery chemistry, but also published work in financial risk analysis, and other fundamental quantum research.”

Like D-Wave, IBM has been aggressively expanding its quantum presence worldwide. In a separate announcement today, Big Blue reported expansion of its IBM Q Network in Europe. The new members, Aalto University, University of Turku, EPFL, University of the Basque Country and The International Iberian Nanotechnology Laboratory “will have direct access to IBM Q Network resources and access to the IBM Q Experience’s publicly available quantum computing systems for teaching, as well as faculty and student research projects that advance quantum information science and explore early applications.”

NEVENS LAW – IS QUANTUM SUPREMACY AT HAND?

Quantum supremacy – the notion of a quantum computer performing a task that classical computers cannot – was the first attempt to provide a simple description of the capability that would indicate quantum computing was ready to burst past traditional computing. It was followed by a somewhat less absolute notion, quantum advantage, which is the idea that quantum computers can do a task sufficiently better than classical machines to warrant making the switch. In either case, they are intended to represent a pivotal milestone for QC.

Neven’s idea is that achieving quantum supremacy is not far ahead and that doing so is the natural result of QC’s inherent advantages and quantum device advances – captured in Neven’s Law – as discussed earlier in this article. To demonstrate how quickly the gap is closing writer Kevin Hartnett recounts the experiences of Google AI in his article.

“In December 2018, scientists at Google AI ran a calculation on Google’s best quantum processor. They were able to reproduce the computation using a regular laptop. Then in January, they ran the same test on an improved version of the quantum chip. This time they had to use a powerful desktop computer to simulate the result. By February, there were no longer any classical computers in the building that could simulate their quantum counterparts. The researchers had to request time on Google’s enormous server network to do that,” wrote Hartnett.

You get the idea. QC is catching up and fast is the contention. Sometime last February, Neven reportedly had to request more resources – “We were running jobs comprised of a million processors.”

His notion of a doubly exponential rate is interesting. “Even exponential growth is pretty fast. It means that some quantity grows by powers of 2: 21, 22, 23, 24. The first few increases might not be that noticeable, but subsequent jumps are massive. Moore’s law, the famous guideline stating (roughly) that computing power doubles every two years, is exponential,” explained Hartnett.

Doubly exponential growth is more dramatic – instead of increasing by powers of 2, quantities increase by the power two raised to the power of two (shown below):

We’ll see if Neven’s observation proves true.

Link to Quanta article: https://www.quantamagazine.org/does-nevens-law-describe-quantum-computings-rise-20190618/

Link to Scientific American article: https://www.scientificamerican.com/article/a-new-law-suggests-quantum-supremacy-could-happen-this-year/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Amid Upbeat Earnings, Intel to Cut 1% of Employees, Add as Many

January 24, 2020

For all the sniping two tech old timers take, both IBM and Intel announced surprisingly upbeat earnings this week. IBM CEO Ginny Rometty was all smiles at this week’s World Economic Forum in Davos, Switzerland, after  Read more…

By Doug Black

Indiana University Dedicates ‘Big Red 200’ Cray Shasta Supercomputer

January 24, 2020

After six months of celebrations, Indiana University (IU) officially marked its bicentennial on Monday – and it saved the best for last, inaugurating Big Red 200, a new AI-focused supercomputer that joins the ranks of Read more…

By Staff report

What’s New in HPC Research: Tsunamis, Wildfires, the Large Hadron Collider & More

January 24, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware. In fact, the company's simulated bifurcation algorithm is Read more…

By Tiffany Trader

Energy Research Combines HPC, 3D Manufacturing

January 23, 2020

A federal energy research initiative is gaining momentum with the release of a contract award aimed at using supercomputing to harness 3D printing technology that would boost the performance of power generators. Partn Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

TACC Highlights Its Upcoming ‘IsoBank’ Isotope Database

January 22, 2020

Isotopes – elemental variations that contain different numbers of neutrons – can help researchers unearth the past of an object, especially the few hundred isotopes that are known to be stable over time. However, iso Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware Read more…

By Tiffany Trader

In Advanced Computing and HPC, Dell EMC Sets Sights on the Broader Market Middle 

January 22, 2020

If the leading advanced computing/HPC server vendors were in the batting lineup of a baseball team, Dell EMC would be going for lots of singles and doubles – Read more…

By Doug Black

DNA-Based Storage Nears Scalable Reality with New $25 Million Project

January 21, 2020

DNA-based storage, which involves storing binary code in the four nucleotides that constitute DNA, has been a moonshot for high-density data storage since the 1960s. Since the first successful experiments in the 1980s, researchers have made a series of major strides toward implementing DNA-based storage at scale, such as improving write times and storage density and enabling easier file identification and extraction. Now, a new $25 million... Read more…

By Oliver Peckham

AMD Recruits Intel, IBM Execs; Pending Layoffs Reported at Intel Data Platform Group

January 17, 2020

AMD has raided Intel and IBM for new senior managers, one of whom will replace an AMD executive who has played a prominent role during the company’s recharged Read more…

By Doug Black

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This