Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

By John Russell

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it has partnered with a Japanese QC consulting start-up, Sigma-i, to help prime the QC pump. Last week IBM, with Japan-based colleagues, reported advances in simulating lithium-oxide reactivity such that could help advance battery technology. But first, have you heard of Neven’s Law?

Coined for Hartmut Neven, director of the Google Quantum Artificial Intelligence lab – Neven’s Law, among other things, predicts QC will achieve quantum supremacy soon, perhaps 2019. A good article in Quanta Magazine and reprinted in Scientific American tells the story.

Here’s a brief excerpt:

“The doubly exponential rate at which, according to Neven, quantum computers are gaining on classical ones is a result of two exponential factors combined with each other. The first is that quantum computers have an intrinsic exponential advantage over classical ones: If a quantum circuit has four quantum bits, for example, it takes a classical circuit with 16 ordinary bits to achieve equivalent computational power. This would be true even if quantum technology never improved.

“The second exponential factor comes from the rapid improvement of quantum processors. Neven says that Google’s best quantum chips have recently been improving at an exponential rate. (This rapid improvement has been driven by a reduction in the error rate in the quantum circuits. Reducing the error rate has allowed the engineers to build larger quantum processors, Neven said.) If classical computers require exponentially more computational power to simulate quantum processors, and those quantum processors are growing exponentially more powerful with time, you end up with this doubly exponential relationship between quantum and classical machines.”

Apparently, the rule began as an in-house observation before Neven mentioned it in May at the Google Quantum Spring Symposium where he said that quantum computers are gaining computational power relative to classical ones at a “doubly exponential” rate. We’ll defer further sketching of his argument till later in the article. Not everyone (no surprise) agrees with Neven but Google definitely has earned credentials in this space.

RISE OF QC CONSULTANTS: D-WAVE PARTNERS WITH SIGMA-I

D-Wave 2000Q System

First up is D-Wave, which yesterday announced forming a partnership with Sigma-i, a spin-out from Tohoku University. Sigma-i is touted as a “company formed to optimize the world with quantum computing technologies.” Might as well have stretch aspirations. Sigma-i is one of an emerging class of quantum computing consultants. In this instance its expertise is in quantum annealing

“In Japan, many companies look forward to the real-world applications that quantum computing can and will bring,” said Masayuki Ohzeki, CEO of Sigma-i. “This contract couples our quantum expertise with D-Wave’s powerful quantum computing systems, bridging the gap between industry and academia, and ushering in a new era of quantum computing in Japan.”

D-Wave labeled its partnership with Sigma-i as “the biggest commercial, global quantum deal to date – [and] will power increased access to commercial quantum computing systems, paving the way towards a practical quantum future” but didn’t precisely explain what that encompasses. Sigma-I’s roots seem to be part of the Tohoku University Quantum Annealing Research Development (T-QARD) project. Two key Sigma-i offerings include:

  • Application development. Sigma-i will consult with commercial, research and educational institutions in Japan to help them build quantum applications. No mention is made of whether Sigma-I will develop applications (IP) of its own
  • Access D-Wave’s “Cloud”. Sigma-i will act as a sort of concierge ‘portal’ for access to D-Wave’s 2000Q family of products through Leap (cloud platform). It’s unclear if broad training is also offered.

D-Wave says the Sigma-i team is deeply knowledgeable about how to program the D-Wave system and will offer consulting services, “including coding best practices and embedding problems onto the D-Wave system.” In April, Tohoku, D-Wave, and automotive manufacturer Denso reported developing a new algorithm to segment certain problem types into sub-problems more readily solved on the D-Wave system.

“This contract signals the ongoing growth of our cloud business and the increasing interest in quantum computing worldwide,” according to Vern Brownell, CEO of D-Wave. Back in February, D-Wave announced an 18-month technology roadmap featuring a new underlying fab technology, reduced noise, increased connectivity, 5000-qubit processors, and an expanded toolset for creation of hybrid quantum-classical applications. (See HPCwire article, D-Wave Previews Next-Gen Platform; Debuts Pegasus Topology; Targets 5000 Qubits)

IBM-MITSUBISHI PAPER PUSHES NISQ CAPABILITY

A rendering of IBM Q System One, the world’s first fully integrated universal quantum computing system, currently installed at the Thomas J Watson Research Center. Source: IBM

Last week, IBM and Mitsubishi Chemical reported they had simulated the initial steps of the reaction mechanism between lithium and oxygen in Li-air batteries – the first research of its kind to have been simulated on a quantum computer. Their paper (Computational Investigations of the Lithium Superoxide Dimer Rearrangement on Noisy Quantum Devices) was posted on arXiv last week.

Quantum chemistry has long been a prime target for quantum computing. The new work introduces a method for reducing the complexity of the calculation. Here’s the abstract:

“Currently available noisy intermediate-scale quantum (NISQ) devices are limited by the number of qubits that can be used for quantum chemistry calculations on molecules. We show [the] number of qubits required for simulations on a quantum computer can be reduced by limiting the number of orbitals in the active space. Thus, we have utilized ansätze that approximate exact classical matrix eigenvalue decomposition methods (Full Configuration Interaction).

“Such methods are appropriate for computations with the Variational Quantum Eigensolver algorithm to perform computational investigations on the rearrangement of the lithium superoxide dimer with both quantum simulators and quantum devices. These results demonstrate that, even with a limited orbital active space, quantum simulators are capable of obtaining energy values that are similar to the exact ones. However, calculations on quantum hardware underestimate energies even after the application of readout error mitigation,” according to the paper.

In the recent work, researchers demonstrate the reduction of orbitals used in the calculation to just the “highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) of the stationary points can effectively reduce this problem down to two qubits for the investigation of the complete mechanism of this rearrangement reaction.” The paper is best read in full.

This joint research was made possible through the IBM Q Network Hub at Keio University in Japan. IBM reports, “Only one year into the collaboration, the hub of IBM, Keio, Mitsubishi Chemical, Mitsubishi UFJ Financial Group, and Mizuho Financial Group has not only made progress in practical battery chemistry, but also published work in financial risk analysis, and other fundamental quantum research.”

Like D-Wave, IBM has been aggressively expanding its quantum presence worldwide. In a separate announcement today, Big Blue reported expansion of its IBM Q Network in Europe. The new members, Aalto University, University of Turku, EPFL, University of the Basque Country and The International Iberian Nanotechnology Laboratory “will have direct access to IBM Q Network resources and access to the IBM Q Experience’s publicly available quantum computing systems for teaching, as well as faculty and student research projects that advance quantum information science and explore early applications.”

NEVENS LAW – IS QUANTUM SUPREMACY AT HAND?

Quantum supremacy – the notion of a quantum computer performing a task that classical computers cannot – was the first attempt to provide a simple description of the capability that would indicate quantum computing was ready to burst past traditional computing. It was followed by a somewhat less absolute notion, quantum advantage, which is the idea that quantum computers can do a task sufficiently better than classical machines to warrant making the switch. In either case, they are intended to represent a pivotal milestone for QC.

Neven’s idea is that achieving quantum supremacy is not far ahead and that doing so is the natural result of QC’s inherent advantages and quantum device advances – captured in Neven’s Law – as discussed earlier in this article. To demonstrate how quickly the gap is closing writer Kevin Hartnett recounts the experiences of Google AI in his article.

“In December 2018, scientists at Google AI ran a calculation on Google’s best quantum processor. They were able to reproduce the computation using a regular laptop. Then in January, they ran the same test on an improved version of the quantum chip. This time they had to use a powerful desktop computer to simulate the result. By February, there were no longer any classical computers in the building that could simulate their quantum counterparts. The researchers had to request time on Google’s enormous server network to do that,” wrote Hartnett.

You get the idea. QC is catching up and fast is the contention. Sometime last February, Neven reportedly had to request more resources – “We were running jobs comprised of a million processors.”

His notion of a doubly exponential rate is interesting. “Even exponential growth is pretty fast. It means that some quantity grows by powers of 2: 21, 22, 23, 24. The first few increases might not be that noticeable, but subsequent jumps are massive. Moore’s law, the famous guideline stating (roughly) that computing power doubles every two years, is exponential,” explained Hartnett.

Doubly exponential growth is more dramatic – instead of increasing by powers of 2, quantities increase by the power two raised to the power of two (shown below):

We’ll see if Neven’s observation proves true.

Link to Quanta article: https://www.quantamagazine.org/does-nevens-law-describe-quantum-computings-rise-20190618/

Link to Scientific American article: https://www.scientificamerican.com/article/a-new-law-suggests-quantum-supremacy-could-happen-this-year/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

D-Wave Delivers 5000-qubit System; Targets Quantum Advantage

September 29, 2020

D-Wave today launched its newest and largest quantum annealing computer, a 5000-qubit goliath named Advantage that features 15-way qubit interconnectivity. It also introduced the D-Wave Launch program intended to jump st Read more…

By John Russell

What’s New in Computing vs. COVID-19: AMD, Remdesivir, Fab Spending & More

September 29, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

Global QC Market Projected to Grow to More Than $800 million by 2024

September 28, 2020

The Quantum Economic Development Consortium (QED-C) and Hyperion Research are projecting that the global quantum computing (QC) market - worth an estimated $320 million in 2020 - will grow at an anticipated 27% CAGR betw Read more…

By Staff Reports

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Committee last week accepted a subcommittee report calling for a t Read more…

By John Russell

Supercomputer Research Aims to Supercharge COVID-19 Antiviral Remdesivir

September 25, 2020

Remdesivir is one of a handful of therapeutic antiviral drugs that have been proven to improve outcomes for COVID-19 patients, and as such, is a crucial weapon in the fight against the pandemic – especially in the abse Read more…

By Oliver Peckham

AWS Solution Channel

The Water Institute of the Gulf runs compute-heavy storm surge and wave simulations on AWS

The Water Institute of the Gulf (Water Institute) runs its storm surge and wave analysis models on Amazon Web Services (AWS)—a task that sometimes requires large bursts of compute power. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

D-Wave Delivers 5000-qubit System; Targets Quantum Advantage

September 29, 2020

D-Wave today launched its newest and largest quantum annealing computer, a 5000-qubit goliath named Advantage that features 15-way qubit interconnectivity. It a Read more…

By John Russell

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Commit Read more…

By John Russell

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the new platforms will deliver 50 percent and 40 percent more... Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics code. These optimizations will be incorporated into release 2.15 with patches available for earlier versions. Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This