ISC19 Cluster Competition: HPCC Deep Dive

By Dan Olds

July 7, 2019

The biggest benchmark the student warriors tackled during the ISC19 Student Cluster Competition was the colossal HPC Challenge. This is a collection of benchmarks that has a little something for everyone, from memory bandwidth fans to those who can’t get enough raw number crunching. The HPC Challenge benchmark is run as a single job. However, there are some limited ways to optimize and tune the benchmarks before you run them.

We consulted a long-time HPC expert who bills himself as a “former slimy benchmarker” who knows the ins and outs of benchmarking and has used them for both good and evil. When contacted, he said that students have to intimately know the Three Rules of Benchmarking:

“The first rule of benchmarking is read the rules; the second rule of benchmarking is read the rules. And the third rule of benchmarking is to obey the first two rules.”

With that sage advice, let’s take a look at the detailed student scores for HPCC…

HPL is an old friend to most benchmarkers:  they know it, they love it. Or at least know how to work it. While the students run LINPACK to qualify for the Highest LINPACK award, they run it again as part of the HPCC benchmark.

CHPC narrowly beat out EPCC for a win on HPL, with Nanyang coming in third place. The average and median scores for the field are kind of low, which is a bit of a surprise to me since the students have had so much practice on it.

 

 

P-TRANS is a benchmark that measures the rate at which a system can transpose a large matrix on its diagonal. Depending on the size of the matrix, this can be pretty demanding computationally. It’s possible, and within the HPCC rules, to use a linear algebra library, like BLAS, to optimize the process.

CHPC scored another win on P-TRANS with a score of 49.42 GB/s, well ahead of ETH Zurich’s score of 43.51. University of Hamburg makes their first appearance on the leaderboard with their third place finish. Tsinghua earns an honorable mention for their score of 35.76. All of our top finishers were way above the average and median scores for P-TRANS.

 

 

Random Access measures how quickly the system can access memory pages, loading page after page of memory. This one isn’t so much about tuning as it is about having a hardware set up that has good memory characteristics, such as fast DIMMs and low latency. It also helps to have a single DIMM per memory channel. Our former slimey benchmarker says: “Nothing they can do on this except set up for big pages, if they know how to do that – which they certainly should, in my opinion.”

Sun Yat-Sen schooled the rest of their field with their dominating score of 1.1 Gup/sec, which is a serious number of giga updates. Nanyang pulled second place with a score of .50 and Tsinghua was well back with .35 to take third. EPCC earns a mention because their score was well above the average and median scores, nice job.

 

FFTE (Fast Fournier Transform):  FFTE is an algorithm that converts a signal, usually time or space, into a value in a frequency domain. FFTE is often used in engineering, science and mathematics. “Depending on the matrix size, a FFTE library could improve performance, but they don’t know the matrix size coming in, so too bad….”says our slimy benchmarker.

CHPC dominated FFTE by more than doubling the score of the second-place Sun Yat-Sen. EPCC Edinburgh got on the board with a distant third-place finish.

 

 

DEGMM:  This is a benchmark that multiplies matrices, which is a lot of multiplication as it turns out. Our slimy bench marker says “you can’t do much on DEGMM and stay within the rules, but you can use different compilers and different options within the compilers to find the optimal set for their machine.”

It looks like Tsinghua did exactly that and it paid off. Their score of 2,691.93 was more than double that of second-place Nanyang Tech. Our buddies from UPC make the leaderboard with their 958 score, which is a pretty damned good result for a team that’s driving Arm processors. Great job.

 

 

 

STREAM is a memory bandwidth test. According to our slimy benchmarker, “…more and faster DIMMs are key here, and big pages will make a difference. Need to have a DIMM in every DIMM slot and a motherboard that can drive them.”

Tsinghua, a team that had the highest performance cluster in our evaluation, handily grabbed the STREAM crown by dominating the rest of the field with their score of 816 GB/s. Nanyang took second place with their score of 347.27. The Warsaw Warriors put themselves on the board with a third-place score of 240.74, despite driving a brand new architecture, the NEC Aurora vector system.

 

 

Random Ring Bandwidth is a test of MPI bandwidth that measures two cases of MPI bandwidth:  1) a non-simultaneous ping pong that tests MPI bandwidth with no contention, and 2) a simultaneous communication that uses random and ring patterns to measure bandwidth with MPI contention.

Random Ring Latency tests the latency of system communications using the same mechanisms as the bandwidth test.

In the bandwidth test, the higher the score, the better. In the latency test, lower is better.

In the ISC19 HPCC benchmark, Nanyang Tech is the Lord of the Rings, taking the top scores in both benchmarks. Tsinghua took second in the ring tests. The team from NCKU, which has the most rudimentary cluster in the competition (although it’s the best price-performer), grabbed third in both tests, putting them on the big board for the first time. EPCC took fourth in the bandwidth test while ETH Zurich took fourth on the latency test.

The overall scores tell the story as Tsinghua grabs the top slot with a 100% normalized score and adds a full 10 points to their competition tally. Nanyang grabs second place and 9.4 points. CHPC and Sun Yat-Sen finish a distant third and fourth, but still get their share of points.

While this is a mega-big benchmark, in the whole scheme of things it only counts for 10% of the total competition score – not enough to give anyone an insurmountable advantage or disadvantage. But it’s fun to look at the deep results and highlight the individual performance of the teams.

Quick plug:  check out the Student Cluster Competition Leadership List and see where your favorite team ranks. This is a joint project between the HPC-AI Advisory Council and me and is the culmination of many years of painstaking tracking and research. The list shows every team to ever compete in a Student Cluster Competition and assigns points based on their participation and awards. There are four different cuts of the data, the first being a worldwide ranking, then separate rankings for EMEA, the Americas, and APAC. It will be updated after every competition and more features will be added over time.

In our next articles we’ll be looking at the HPC application scores and then looking at the day-by-day results to show you who won and how they won. Stay tuned….

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, some of the apps, like SWIFT and OpenFOAM, really pushed the st Read more…

By Dan Olds

Portugal Launches Its First Supercomputer

July 12, 2019

Portugal has officially inaugurated its first-ever supercomputer. The unassumingly named “Bob” supercomputer is housed in the Minho Advanced Computer Center (MACC) at the University of Minho.  Bob was announced i Read more…

By Oliver Peckham

What’s New in HPC Research: Traffic Simulation, Performance Variations, Scheduling & More

July 11, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

How AI Powers Up Data Management and Analytics

Companies are making more decisions based on data. However, the ability to intelligently process the growing volume of data is a bottleneck to extracting actionable insights. Read more…

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered servers for AI workloads, has expanded the program beyond th Read more…

By Doug Black

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

ISC19 Cluster Competition: HPCC Deep Dive

July 7, 2019

The biggest benchmark the student warriors tackled during the ISC19 Student Cluster Competition was the colossal HPC Challenge. This is a collection of benchmar Read more…

By Dan Olds

OLCF Bids Farewell to Its Titan Supercomputer

July 4, 2019

After seven years of faithful service, and a long reign as the United States' fastest supercomputer, the Cray XK7-based Titan supercomputer at the Oak Ridge Lea Read more…

By Staff report

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This