Developing Deep Learning Analytics for Health Care

July 8, 2019

The University of California, San Francisco is developing and training an artificial intelligence model that could help clinicians diagnose tears in knee cartilage.

As many athletes and active people have learned, a tear in the knee cartilage, or the meniscus, can lead to long-term health and lifestyle consequences, from debilitating osteoarthritis to limits on physical activity. One of the keys to mitigating these consequences is to identify and treat tears in the meniscus early on, before the condition brings larger health issues.

While this goal is pretty simple, the path forward is rather complicated. To diagnose a torn meniscus, clinicians need to review and interpret hundreds of high-resolution 3D magnetic resonance imaging (MRI) slices showing a patient’s knee from different angles. Radiologists then assign a numerical score to indicate the presence of a tear and its severity. This labor-intensive, time-consuming process relies heavily on the skills and availability of clinical specialists, and the interpretation of the images themselves can be rather subjective.

At the University of California, San Francisco (UCSF) and its Center for Digital Health Innovation (CDHI), researchers are working to address these challenges by adding artificial intelligence to the diagnostic equation. In this initiative, explored in a recent Intel case study, the research team is working to develop and train a deep learning model that can examine MRI results, identify those that show signs of torn knee cartilage and, eventually, objectively classify meniscus tears.  The ultimate goal is to develop an accurate, data-driven grading system of meniscus lesions, and one that can provide results to patients immediately after scanning.

The solution

To support this ambitious AI initiative, the UCSF CDHI research team used an open-source distributed deep-learning library, BigDL on Apache Spark, to develop algorithms and train models on a data analytics cluster built with leading-edge technologies. That cluster is based on Dell EMC™ PowerEdge™ servers, Intel® Xeon® Scalable processors and the Cloudera Distribution of Apache Hadoop for storing, processing and analyzing data. This approach allowed UCSF to train 3D models where the data resides, taking advantage of the larger-than-accelerator memory footprint. Other technologies in the solution include the Intel® Math Kernel Library (Intel® MKL) to accelerate math processing routines, the TensorFlow open source framework for deep learning and machine learning, and the TensorBoard suite of open source visualization tools.

The 3D convolutional neural network at the heart of this image-classification solution is using existing MRI images to train a model to recognize meniscus tears. The initial goal of this incremental process is to develop a model that can determine whether a patient’s cartilage is normal or torn, and to make this determination with a level of accuracy that meets or exceeds that of trained radiologists. This advance alone could help drive patient care forward by enabling radiologists to quickly identify the patients they need to focus on.

The bigger picture

This work that is under way at UCSF provides a glimpse into the future of healthcare. In this emerging era, AI and other data-driven technologies will help transform patient care and make the healthcare system more efficient. These new technologies will also help address a critical shortage of physicians. A 2018 study conducted for the Association of American Medical Colleges (AAMC) predicts that the United States will face a shortage of 42,600 to 121,300 physicians by 2030, and that these shortages will be particularly large in specialty-care fields.[1]

Technologies like AI will also help us contain the rising costs of caring for an aging and growing population. A study by a team of researchers from the consulting firm Accenture found that the use of 10 promising AI applications could create up to $150 billion in annual savings for U.S. healthcare by 2026.[2] Notably, this study ranked the use case of automated image diagnosis — like that being developed at UCSF — as one of 10 AI applications that could change healthcare.

To learn more

For a closer look at UCSF’s efforts to advance the use of AI in clinical medicine, read the Intel case study “Using Artificial Intelligences Solutions to Improve Patient Care.” And for a deeper dive into the broader topics explored here, read the Dell EMC ebook “Making digital transformation in healthcare a reality.”


[1] Association of American Medical Colleges (AAMC), “GME Funding and Its Role in Addressing the Physician Shortage,” May 29, 2018.

[2] Brian Kalis, Matt Collier, Richard Fu, “10 Promising AI Applications in Health Care,” Harvard Business Review, May 10, 2018.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire