Developing Deep Learning Analytics for Health Care

July 8, 2019

The University of California, San Francisco is developing and training an artificial intelligence model that could help clinicians diagnose tears in knee cartilage.

As many athletes and active people have learned, a tear in the knee cartilage, or the meniscus, can lead to long-term health and lifestyle consequences, from debilitating osteoarthritis to limits on physical activity. One of the keys to mitigating these consequences is to identify and treat tears in the meniscus early on, before the condition brings larger health issues.

While this goal is pretty simple, the path forward is rather complicated. To diagnose a torn meniscus, clinicians need to review and interpret hundreds of high-resolution 3D magnetic resonance imaging (MRI) slices showing a patient’s knee from different angles. Radiologists then assign a numerical score to indicate the presence of a tear and its severity. This labor-intensive, time-consuming process relies heavily on the skills and availability of clinical specialists, and the interpretation of the images themselves can be rather subjective.

At the University of California, San Francisco (UCSF) and its Center for Digital Health Innovation (CDHI), researchers are working to address these challenges by adding artificial intelligence to the diagnostic equation. In this initiative, explored in a recent Intel case study, the research team is working to develop and train a deep learning model that can examine MRI results, identify those that show signs of torn knee cartilage and, eventually, objectively classify meniscus tears.  The ultimate goal is to develop an accurate, data-driven grading system of meniscus lesions, and one that can provide results to patients immediately after scanning.

The solution

To support this ambitious AI initiative, the UCSF CDHI research team used an open-source distributed deep-learning library, BigDL on Apache Spark, to develop algorithms and train models on a data analytics cluster built with leading-edge technologies. That cluster is based on Dell EMC™ PowerEdge™ servers, Intel® Xeon® Scalable processors and the Cloudera Distribution of Apache Hadoop for storing, processing and analyzing data. This approach allowed UCSF to train 3D models where the data resides, taking advantage of the larger-than-accelerator memory footprint. Other technologies in the solution include the Intel® Math Kernel Library (Intel® MKL) to accelerate math processing routines, the TensorFlow open source framework for deep learning and machine learning, and the TensorBoard suite of open source visualization tools.

The 3D convolutional neural network at the heart of this image-classification solution is using existing MRI images to train a model to recognize meniscus tears. The initial goal of this incremental process is to develop a model that can determine whether a patient’s cartilage is normal or torn, and to make this determination with a level of accuracy that meets or exceeds that of trained radiologists. This advance alone could help drive patient care forward by enabling radiologists to quickly identify the patients they need to focus on.

The bigger picture

This work that is under way at UCSF provides a glimpse into the future of healthcare. In this emerging era, AI and other data-driven technologies will help transform patient care and make the healthcare system more efficient. These new technologies will also help address a critical shortage of physicians. A 2018 study conducted for the Association of American Medical Colleges (AAMC) predicts that the United States will face a shortage of 42,600 to 121,300 physicians by 2030, and that these shortages will be particularly large in specialty-care fields.[1]

Technologies like AI will also help us contain the rising costs of caring for an aging and growing population. A study by a team of researchers from the consulting firm Accenture found that the use of 10 promising AI applications could create up to $150 billion in annual savings for U.S. healthcare by 2026.[2] Notably, this study ranked the use case of automated image diagnosis — like that being developed at UCSF — as one of 10 AI applications that could change healthcare.

To learn more

For a closer look at UCSF’s efforts to advance the use of AI in clinical medicine, read the Intel case study “Using Artificial Intelligences Solutions to Improve Patient Care.” And for a deeper dive into the broader topics explored here, read the Dell EMC ebook “Making digital transformation in healthcare a reality.”


[1] Association of American Medical Colleges (AAMC), “GME Funding and Its Role in Addressing the Physician Shortage,” May 29, 2018.

[2] Brian Kalis, Matt Collier, Richard Fu, “10 Promising AI Applications in Health Care,” Harvard Business Review, May 10, 2018.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire