Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

By Tiffany Trader

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at-scale division. Google for ResNet-50, Transformer and SSD; Nvidia for GNMT, Reinforcement Learning and Mask R-CNN.

In total, Nvidia claimed eight new performance records, three in the at-scale category, with its V100-based clusters, and Google achieved three top at-scale results for its TPU v3 Pods. Like the inaugural MLPerf training round, announced last December, the second round is primarily a two-horse race. Google, Nvidia and Intel are the only companies who submitted to the closed division* and Intel only submitted to one out of the six categories.

Given all the emerging AI silicon startups with heady performance claims, why haven’t any shown up on the MLPerf results?

“Today there really isn’t a production-ready silicon chip that can compete in this space for training,” Karl Freund, consulting lead for HPC and deep learning at industry analyst group Moor Insights & Strategy, told HPCwire. “If you want to do your training in the cloud, you’re going to use Google; if you want to do training on site, you’re going to have to use Nvidia.

“Even by the end of the year, when some companies may have a production ready chip, going from there to having a thousand-chip farm tuned and running at scale to run these benchmarks, it’s going to be another year. And running these benchmarks is really expensive.”

MLPerf Training v0.6 benchmark suite (Source: MLPerf)

Minute Training

Both Nvidia with its DGX-2 SuperPod V100-powered nodes and Google with its TPU Pods achieved “at scale” training times on four of the six benchmarks of about a minute or two.

“There’s a class of models that can now be trained in around a minute,” said Paresh Kharya, director of product management for accelerated computing at Nvidia, in a pre-briefing held for media, citing image classification with ResNet-50, Transformer, GNMT and SSD. “However, there are still some harder problems that take many minutes to train even with the latest state-of-the-art infrastructure. One of the problems is reinforcement learning. We could train the MiniGo model in just under 14 minutes – that was the only submission that Intel had and there was no submission from Google on that model.”

Nvidia said it achieved 20-80 percent more throughput in this testing round on the same DGX-2 hardware used seven months ago, due to software innovations, including to its CUDA-X AI software stack. And since launch in 2017, the same DGX-1 server trains the ResNet-50 model 4 times faster, according to Nvidia.

Detailing Google’s results in a blog post, Zak Stone, senior product manager for Cloud TPUs with the Google Brain Team, stated, “Google Cloud is the first public cloud provider to outperform on-premise systems when running large-scale, industry-standard ML training workloads of Transformer, SSD, and ResNet-50. In the Transformer and SSD categories, Cloud TPU v3 Pods trained models over 84 percent faster than the fastest on-premise systems in the MLPerf Closed Division.”

Google added that compared to the initial alpha results last December, it submitted results on a wider range of tests and employed a full Cloud TPU v3 Pod for the first time. “This additional scale and software optimizations improved our results by up to 62x,” said Google.

Intel reported a measurement of 14.43 minutes to train MiniGo on 32 nodes of a 2-socket Xeon Platinum 8260L processor cluster system. On a single node of a 2-socket Xeon Platinum 9280 system, Intel completed training of the MiniGo model in 77.95 minutes. “These results demonstrate that 2nd generation Intel Xeon Scalable Processors can deliver comparable reinforcement learning (MiniGO) training time as the best accelerator performance in today’s MLPerf 0.6 result publication,” the company said in a statement.

Nvidia was the only company that submitted across all six categories of the industry benchmark suite (which encompasses image classification, object detection, translation, and reinforcement learning). After abstaining from the reinforcement learning category in the previous iteration, Nvidia participated this time, noting that the benchmark had been “refactored by MLPerf to allow for parallelism and meaningful acceleration.”

MLPerf 0.6 Performance at Max Scale. Top to bottom, omitting the “reinforcement learning/MiniGo” category, the Nvidia DGX-2H test machines use 1,536, 480, 256, 240 and 192 V100 GPUs, respectively. The Cloud TPU Pod submissions used 1,024, 1,024, 512, 1,024, and 128 TPU v3.0 chips, respectively. The Intel (MiniGo) submission was conducted on 64 Xeon Platinum 8260L CPUs, going up against three Nvidia DGX-1s (24 V100s). Graphic courtesy Nvidia.

On a “per accelerator” basis, Nvidia swept five out of six categories (see chart below right). Testing was done on one DGX-2H node, comprised of 16 V100s connected via Nvidia’s NVLink switch; except for MiniGo, which was done on one Nvidia DGX-1 (8 V100s). On the ImageNet test, Google’s TPUv3.32 system outperformed Nvidia’s DGX-2H machine; the math works out to 11.25 hours to train the model on one TPUv3 chip versus 14.06 hours on one Nvidia V100.

Nvidia’s Per-Accelerator results – hours to train normalized to one V100 GPU

While competing on a per-accelerator basis might be a lower barrier to entry for newcomers, Google and Nvidia would probably argue that at-scale is mostly what companies care about. “For training, they are not going to wait half a day or more to get their results back,” noted Freund. “They are going to spend the money to get the training done, so they need to see what the results are at scale.

Nvidia’s DGX-2 SuperPod

“Running these benchmarks is very expensive and only the large companies need apply,” added Freund. “Right now, the industry really only has two alternatives for training. Inference will be a different story. There will be close to a score of inference benchmarks published in the next 12 months because it’s a lot easier to do and it’s a wide open market. There’s not an 800lb gorilla sitting on top of it, called Nvidia. There are going to be a lot of startups competing for that space. For training: there’s only two companies now; there will be three when Intel launches Nervana. But it’s going to [continue to] be a very small number.”

MLPerf supporting companies (as of July 09, 2019) – click-to-enlarge

MLPerf is an AI benchmarking suite “for measuring the speed of machine learning software and hardware.” Started by a small group from academia and industry–including Google, Baidu, Intel, AMD, Harvard and Stanford–the project has grown considerably since launching in May 2018. At last count (July 9, 2019), the website lists more than 40 supporting companies: the aforementioned Google, Intel, AMD and Baidu as well as ARM, Nvidia, Cray, Cisco, Microsoft and others (notably, not IBM or Amazon).

According to the consortium, the training benchmark is defined by a dataset and quality target and also provides a reference implementation for each benchmark that uses a specific model. Time to train a model at a specified quality target is the main performance metric. There are six “active” benchmarks in version v0.6 of the suite. (The recommendation benchmark that was part of the v0.5 suite is currently being reviewed.)

MLPerf recently announced the launch of an inference-focused benchmark (see our coverage here); the consortium’s website indicates results for the 0.5 version are due Sept. 6.

* This round also saw a research submission from Alibaba in the closed division and the first open submission – from Fujitsu. To clarify, MLPerf explains, “the Closed division is intended to compare hardware platforms or software frameworks ‘apples-to-apples’ and requires using the same model and optimizer as the reference implementation. The Open division is intended to foster faster models and optimizers and allows any ML approach that can reach the target quality.” The v0.6 results can be reviewed here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell’s AMD-Powered Server Line Targets High-End Jobs

September 17, 2019

Dell Technologies rolled out five new servers this week based on AMD’s latest Epyc processor that are geared toward data-driven workloads running on increasingly popular multi-cloud platforms as well as in the HPC data Read more…

By George Leopold

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Rumors of My Death Are Still Exaggerated: The Mainframe

[Connect with Spectrum users and learn new skills in the IBM Spectrum LSF User Community.]

As of 2017, 92 of the world’s top 100 banks used mainframes. Read more…

Google’s ML Compiler Initiative Advances

September 12, 2019

Machine learning models running on everything from cloud platforms to mobile phones are posing new challenges for developers faced with growing tool complexity. Google’s TensorFlow team unveiled an open-source machine Read more…

By George Leopold

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially la Read more…

By Tiffany Trader

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This