Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

By Tiffany Trader

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at-scale division. Google for ResNet-50, Transformer and SSD; Nvidia for GNMT, Reinforcement Learning and Mask R-CNN.

In total, Nvidia claimed eight new performance records, three in the at-scale category, with its V100-based clusters, and Google achieved three top at-scale results for its TPU v3 Pods. Like the inaugural MLPerf training round, announced last December, the second round is primarily a two-horse race. Google, Nvidia and Intel are the only companies who submitted to the closed division* and Intel only submitted to one out of the six categories.

Given all the emerging AI silicon startups with heady performance claims, why haven’t any shown up on the MLPerf results?

“Today there really isn’t a production-ready silicon chip that can compete in this space for training,” Karl Freund, consulting lead for HPC and deep learning at industry analyst group Moor Insights & Strategy, told HPCwire. “If you want to do your training in the cloud, you’re going to use Google; if you want to do training on site, you’re going to have to use Nvidia.

“Even by the end of the year, when some companies may have a production ready chip, going from there to having a thousand-chip farm tuned and running at scale to run these benchmarks, it’s going to be another year. And running these benchmarks is really expensive.”

MLPerf Training v0.6 benchmark suite (Source: MLPerf)

Minute Training

Both Nvidia with its DGX-2 SuperPod V100-powered nodes and Google with its TPU Pods achieved “at scale” training times on four of the six benchmarks of about a minute or two.

“There’s a class of models that can now be trained in around a minute,” said Paresh Kharya, director of product management for accelerated computing at Nvidia, in a pre-briefing held for media, citing image classification with ResNet-50, Transformer, GNMT and SSD. “However, there are still some harder problems that take many minutes to train even with the latest state-of-the-art infrastructure. One of the problems is reinforcement learning. We could train the MiniGo model in just under 14 minutes – that was the only submission that Intel had and there was no submission from Google on that model.”

Nvidia said it achieved 20-80 percent more throughput in this testing round on the same DGX-2 hardware used seven months ago, due to software innovations, including to its CUDA-X AI software stack. And since launch in 2017, the same DGX-1 server trains the ResNet-50 model 4 times faster, according to Nvidia.

Detailing Google’s results in a blog post, Zak Stone, senior product manager for Cloud TPUs with the Google Brain Team, stated, “Google Cloud is the first public cloud provider to outperform on-premise systems when running large-scale, industry-standard ML training workloads of Transformer, SSD, and ResNet-50. In the Transformer and SSD categories, Cloud TPU v3 Pods trained models over 84 percent faster than the fastest on-premise systems in the MLPerf Closed Division.”

Google added that compared to the initial alpha results last December, it submitted results on a wider range of tests and employed a full Cloud TPU v3 Pod for the first time. “This additional scale and software optimizations improved our results by up to 62x,” said Google.

Intel reported a measurement of 14.43 minutes to train MiniGo on 32 nodes of a 2-socket Xeon Platinum 8260L processor cluster system. On a single node of a 2-socket Xeon Platinum 9280 system, Intel completed training of the MiniGo model in 77.95 minutes. “These results demonstrate that 2nd generation Intel Xeon Scalable Processors can deliver comparable reinforcement learning (MiniGO) training time as the best accelerator performance in today’s MLPerf 0.6 result publication,” the company said in a statement.

Nvidia was the only company that submitted across all six categories of the industry benchmark suite (which encompasses image classification, object detection, translation, and reinforcement learning). After abstaining from the reinforcement learning category in the previous iteration, Nvidia participated this time, noting that the benchmark had been “refactored by MLPerf to allow for parallelism and meaningful acceleration.”

MLPerf 0.6 Performance at Max Scale. Top to bottom, omitting the “reinforcement learning/MiniGo” category, the Nvidia DGX-2H test machines use 1,536, 480, 256, 240 and 192 V100 GPUs, respectively. The Cloud TPU Pod submissions used 1,024, 1,024, 512, 1,024, and 128 TPU v3.0 chips, respectively. The Intel (MiniGo) submission was conducted on 64 Xeon Platinum 8260L CPUs, going up against three Nvidia DGX-1s (24 V100s). Graphic courtesy Nvidia.

On a “per accelerator” basis, Nvidia swept five out of six categories (see chart below right). Testing was done on one DGX-2H node, comprised of 16 V100s connected via Nvidia’s NVLink switch; except for MiniGo, which was done on one Nvidia DGX-1 (8 V100s). On the ImageNet test, Google’s TPUv3.32 system outperformed Nvidia’s DGX-2H machine; the math works out to 11.25 hours to train the model on one TPUv3 chip versus 14.06 hours on one Nvidia V100.

Nvidia’s Per-Accelerator results – hours to train normalized to one V100 GPU

While competing on a per-accelerator basis might be a lower barrier to entry for newcomers, Google and Nvidia would probably argue that at-scale is mostly what companies care about. “For training, they are not going to wait half a day or more to get their results back,” noted Freund. “They are going to spend the money to get the training done, so they need to see what the results are at scale.

Nvidia’s DGX-2 SuperPod

“Running these benchmarks is very expensive and only the large companies need apply,” added Freund. “Right now, the industry really only has two alternatives for training. Inference will be a different story. There will be close to a score of inference benchmarks published in the next 12 months because it’s a lot easier to do and it’s a wide open market. There’s not an 800lb gorilla sitting on top of it, called Nvidia. There are going to be a lot of startups competing for that space. For training: there’s only two companies now; there will be three when Intel launches Nervana. But it’s going to [continue to] be a very small number.”

MLPerf supporting companies (as of July 09, 2019) – click-to-enlarge

MLPerf is an AI benchmarking suite “for measuring the speed of machine learning software and hardware.” Started by a small group from academia and industry–including Google, Baidu, Intel, AMD, Harvard and Stanford–the project has grown considerably since launching in May 2018. At last count (July 9, 2019), the website lists more than 40 supporting companies: the aforementioned Google, Intel, AMD and Baidu as well as ARM, Nvidia, Cray, Cisco, Microsoft and others (notably, not IBM or Amazon).

According to the consortium, the training benchmark is defined by a dataset and quality target and also provides a reference implementation for each benchmark that uses a specific model. Time to train a model at a specified quality target is the main performance metric. There are six “active” benchmarks in version v0.6 of the suite. (The recommendation benchmark that was part of the v0.5 suite is currently being reviewed.)

MLPerf recently announced the launch of an inference-focused benchmark (see our coverage here); the consortium’s website indicates results for the 0.5 version are due Sept. 6.

* This round also saw a research submission from Alibaba in the closed division and the first open submission – from Fujitsu. To clarify, MLPerf explains, “the Closed division is intended to compare hardware platforms or software frameworks ‘apples-to-apples’ and requires using the same model and optimizer as the reference implementation. The Open division is intended to foster faster models and optimizers and allows any ML approach that can reach the target quality.” The v0.6 results can be reviewed here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire