Super-Connecting the Supercomputers – Innovations Through Network Topologies

By Gilad Shainer, Mellanox Technologies

July 15, 2019

In the article “Super-Connecting the Supercomputers” published on June 10, 2019 in HPCwire, we discussed the different interconnect pillars, namely the connectivity pillar, the network pillar and the communication pillar. The ‘connectivity pillar’ refers to the elements around the interconnect infrastructure, such as network topologies. The ‘network pillar’ refers to the network transport and routing for example. And the ‘communication pillar’ refers to co-design elements related to communication frameworks, such as MPI, SHMEM/PGAS and more. This article focuses on the first pillar, and in particular, on the network topologies.

It may be one of the great secrets, that supercomputing innovations actually begin in the structure of the supercomputer; that is, in the way we connect the compute elements together. There are many network topology options, and InfiniBand, as it is specified and designed as the ultimate software-defined network, can support any thinkable option.

Figure 1 – Network Topologies

Fat-Tree (folded CLOS) is one of the most widely used topologies. It is a good option for a variety of applications as it provides low latency and enables a variety of throughput options – from non-blocking connectivity to oversubscriptions. This topology type maximizes data throughput for a variety of traffic patterns; however, it is relatively costly at large scale due to the large number of switches and links it requires. Torus topologies directly interconnect a host to several of its neighbors in a k-dimensional lattice. Tori topologies are inexpensive but provide low network throughput for adversary traffic patterns. A torus is a great topology for stencil applications, such as lattice QCD applications, but due to its blocking nature and higher latency, it is not a preferred option for supercomputers that need to support a variety of applications.  Examples of other options used today or being developed for future use are Hypercube and HyperX.

The Dragonfly topology was introduced by Kim John et al. and is described in the paper entitled “Technology-driven, highly-scalable dragonfly topology.” Dragonfly provides good performance for a variety of applications (or communication patterns), like Fat-Tree; specifically, it reduces network costs compared to other topologies, by reducing the number of long links.

As seen in Figure 2, Dragonfly is based on groups of connected compute elements, where all the groups are connected in a full graph. One can create any inner-group structure, such as a full graph (Dragonfly), a generalized hypercube (GHC), or a Fat-Tree, as seen in Figure 3.

Figure 2 – Dragonfly Topology

 

Figure 3 – Dragonfly Group Options

The full graph option has been used in the traditional Dragonfly topology deployed with proprietary networks over the years. The Fat-Tree option is being used by the new innovative Dragonfly+ (DF+) topology, supported by InfiniBand. Compared to the traditional Dragonfly, Dragonfly+ is more scalable since it allows connecting larger number of hosts to the network (when comparing the same switch radix), it provides better-known worst-case throughput for the same number of global inter-group links, and it enables better switch buffer utilization.

Multiple papers such as “Performance implications of remote-only load balancing under adversarial traffic in Dragonflies,” by Bogdan Prisacari, German Rodriguez, Marina Garcia, Cyriel Minkenberg (IBM Research – Zurich), and  Enrique Vallejo, Ramon Beivide (University of Cantabria, Spain); or “Modeling UGAL on the Dragonfly Topology,” by Scott Pakin, Michael Lang (Los Alamos National Laboratory) and Atiqul Mollah, Peyman Faizian, Shafayat Rahman, Xin Yuan (Florida State University), indicated several of the traditional Dragonfly performance limitations, such as performance degradation of adversarial traffic, and how network bandwidth can be negatively impacted when using higher switch radix.

On the other hand, the innovative Dragonfly+ supports multiple routes from ingress switch to egress switch, and, therefore, delivers the highest data throughput (without any dependency on the switch radix) due to the Fat Tree topology within the group. This delivers a superior option over the traditional Dragonfly topology for large-scale supercomputing platforms.

The University of Toronto was the first to deploy a large-scale InfiniBand Dragonfly+ supercomputer, which has been in production for nearly 1.5 years now. The Niagara supercomputer appearing in Figure 4, is Canada’s most powerful research supercomputer.

Figure 4 – The Niagara Supercomputer and the Dragonfly+ Topology

Another advantage of Dragonfly+ is the ability to scale the cluster overtime without re-cabling any of the long cables, allowing the addition of new groups, whether compute or storage. This is an advantage which neither the Fat-Tree nor the traditional Dragonfly topologies support, that provides great benefit for multi-phase supercomputers, and supports growing computer or storage demands over time.

The advantages of Dragonfly+ makes it the preferred topology for the new generation of large-scale supercomputing. For example, CSC, the Finnish IT Center for Science, a national HPC center providing supercomputing and networking services for Finnish academia, research institutes, the public sector and industry, have selected the Dragonfly+ InfiniBand topology for its next-generation supercomputer. We expect to hear more announcements of new large-scale supercomputers around the world adopting the innovative Dragonfly+ topology. For more information, contact [email protected].

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

AMD Announces Flurry of New Chips

October 10, 2024

AMD today announced several new chips including its newest Instinct GPU — the MI325X — as it chases Nvidia. Other new devices announced at the company event in San Francisco included the 5th Gen AMD EPYC processors, Read more…

NSF Grants $107,600 to English Professors to Research Aurora Supercomputer

October 9, 2024

The National Science Foundation has granted $107,600 to English professors at US universities to unearth the mysteries of the Aurora supercomputer. The two-year grant recipients will write up what the Aurora supercompute Read more…

VAST Looks Inward, Outward for An AI Edge

October 9, 2024

There’s no single best way to respond to the explosion of data and AI. Sometimes you need to bring everything into your own unified platform. Other times, you lean on friends and neighbors to chart a way forward. Those Read more…

Google Reports Progress on Quantum Devices beyond Supercomputer Capability

October 9, 2024

A Google-led team of researchers has presented more evidence that it’s possible to run productive circuits on today’s near-term intermediate scale quantum devices that are beyond the reach of classical computing. � Read more…

At 50, Foxconn Celebrates Graduation from Connectors to AI Supercomputing

October 8, 2024

Foxconn is celebrating its 50th birthday this year. It started by making connectors, then moved to systems, and now, a supercomputer. The company announced it would build the supercomputer with Nvidia's Blackwell GPUs an Read more…

ZLUDA Takes Third Wack as a CUDA Emulator

October 7, 2024

The ZLUDA CUDA emulator is back in its third invocation. At one point, the project was quietly funded by AMD and demonstrated the ability to run unmodified CUDA applications with near-native performance on AMD GPUs. Cons Read more…

NSF Grants $107,600 to English Professors to Research Aurora Supercomputer

October 9, 2024

The National Science Foundation has granted $107,600 to English professors at US universities to unearth the mysteries of the Aurora supercomputer. The two-year Read more…

VAST Looks Inward, Outward for An AI Edge

October 9, 2024

There’s no single best way to respond to the explosion of data and AI. Sometimes you need to bring everything into your own unified platform. Other times, you Read more…

Google Reports Progress on Quantum Devices beyond Supercomputer Capability

October 9, 2024

A Google-led team of researchers has presented more evidence that it’s possible to run productive circuits on today’s near-term intermediate scale quantum d Read more…

At 50, Foxconn Celebrates Graduation from Connectors to AI Supercomputing

October 8, 2024

Foxconn is celebrating its 50th birthday this year. It started by making connectors, then moved to systems, and now, a supercomputer. The company announced it w Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvi Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago this week emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whateve Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed t Read more…

How GenAI Will Impact Jobs In the Real World

September 30, 2024

There’s been a lot of fear, uncertainty, and doubt (FUD) about the potential for generative AI to take people’s jobs. The capability of large language model Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire