Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

By Rob Johnson

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts flight characteristics. However, modeling the complexities and subtleties of air movement is no easy task. In addition to understanding “ideal” airflow scenarios, engineers need detailed insights regarding turbulence and vortices to understand how they interact with an aircraft in flight. Kenneth Jansen, Professor of Aerospace Engineering at the University of Colorado Boulder, seeks to improve the process through his work in the field of computational fluid dynamics. Where existing predictive models are insufficient, Jansen and his research step in.

For several years, Jansen has tapped the supercomputing resources at the Argonne Leadership Computing Facility (ALCF) to improve computational modeling capabilities to provide deeper insight into the problems posed by fluid flow and how their resolution can lead to refined aircraft design. To prepare for Argonne’s future exascale system, Aurora, Jansen is currently leading two ALCF Early Science Program projects focused on advancing simulation, data analytics, and machine learning methods to enable flow simulations of unprecedented scale and complexity.

Jansen’s specialized work involves developing “scale-resolving simulations” to obtain a more detailed analysis of airflow characteristics. His models augment traditional simulation methods by evaluating unsteady, turbulent motions using high-performance computing. Said Jansen, “This approach allows us to resolve the turbulent-scale dynamics to get a much better overall prediction than if we modeled everything at once.” From there, Jansen and his team employ adaptive methods for prediction. When doing any simulation, said Jansen, “We learn where our predictions are right and where they are not as effective. Those predictions that need improvement undergo adaptive methods to hone and refine the simulation for greater accuracy.”

“We call the air that surrounds the airplane a fluid volume. That envelope is exceedingly difficult to analyze holistically, so we break it down into what we call cells. The size of these cells dictates how much of the turbulence detail we can resolve. By adapting the overall mesh of individual cells, we can make the mesh finer in regions where more detail about airflow is needed.”

Jansen’s CFD research models and predicts fluid flow around aerospace vehicles to allow engineers to design more fuel-efficient planes. (Image courtesy Ken Jansen, University of Colorado Boulder, and Argonne National Laboratory).

Safer, more efficient aircraft

Jansen offers an anecdote to describe the nature of the work and reasoning behind it. “In addition to turbulent airflow, we also seek predictions about other things. For instance, how much lift is generated by airplane wings at a certain speed? Simple models describing a typical flight can accomplish this straightforward task relatively easily. However, the models change dramatically in a scenario like an engine failure on a two-engine plane. To fly the plane straight ahead, the pilot must move the rudder to one side to account for the lack of thrust from the failed engine. In aircraft designs, many have rudders sized about 25 percent larger than necessary to handle that type of situation. However, the increased drag caused by oversized rudders means heavier fuel consumption. Smaller rudders alone could save $300 million a year in fuel costs.”

Aerospace is a very competitive, economically-sensitive market. Those purchasing aircraft seek planes which have long ranges and better fuel economy to make flights more profitable. Jansen’s work simulating airflow helps address these needs by suggesting airframe optimizations which can reduce operational costs of each plane as well as its carbon footprint.

Exascale Computing

“Exascale systems will enable new possibilities in our work,” he noted. “First, its computing prowess can resolve more complex turbulent scales, so we can provide engineers a better predictive capacity for complicated flow conditions like when a rudder is compensating for a failed engine. Secondly, exascale computing empowers us to do many lower-fidelity calculations quickly. This process is especially important when we consider things like wing thickness, where to place flow control devices, and more. By doing thousands of these smaller-scale simulations, we can more efficiently impact an aircraft design in positive ways.”

Partners in flight

“In some sense, we blaze a new trail with this research because we can work closely with aircraft designers – and highly advanced compute systems – to help them accomplish work the aircraft industry may not be able to accomplish on its own for many years. Our discoveries can impact new designs today,” Jansen said. He and his colleagues interface with aircraft companies at multiple levels. They work directly with design engineers to increase the accuracy of their simulations, to improve current aircraft designs, and help them plan next-generation airframes. While most major manufacturers have an internal ‘think tank’ group that does research paralleling Jansen’s, the collaborative effort also helps mine deeper for all possible ways to tweak current designs. Together they pursue augmented simulations to assist both today’s and tomorrow’s endeavors.

Advanced simulations using Aurora

Exascale computing[*] facilities, like the forthcoming Aurora system at Argonne National Laboratory, will open the doors to new opportunities in this arena.

Argonne anticipates delivery of Aurora in 2021. Once online, the system will have the capability to perform billion-billion calculations per second. Built by Cray, Aurora’s performance will derive from advanced hardware including the future generations of Intel Xeon processors, Intel Optane DC Persistent Memory,  Intel Xe technologies, and more. Commented Jansen, “Aurora would not be possible without the support of companies like Cray and Intel. Aurora will advance many scientific projects, including my own. With a tool that powerful, my team has new opportunities to make meaningful contributions to aircraft manufacturing and the environment too.”

Before high-performance computing (HPC) existed, wind tunnels provided the most accurate data for airframe simulations on a more massive scale. More recently though, Argonne’s Theta supercomputer, Aurora’s petascale predecessor, supported Jansen’s simulations of aircraft flight characteristics. Even with Theta though, barriers in computing speed constrained the resulting simulations. Models simulated an aircraft at one-nineteenth its actual size, flying at a quarter of its real-world velocity. In contrast, said Jansen, “Aurora will help us learn more about the fundamental physics of flow control in a full-sized, full-speed aircraft simulation. From there we can identify where big or small design improvements can make an important difference in flight characteristics.”

Even with exascale systems supporting his work, Jansen recognizes the magnitude of the work ahead, “We want to make the best use of Aurora’s resources, so we must ensure our computational methods are both efficient and effective. Making the best use of hardware means we need to re-shape data structures and algorithms, plus we must develop more accurate numerical methods.”

Overcoming turbulence

“As any airline passenger knows, air turbulence can vary greatly throughout a flight. Sometimes you barely notice it, and other times, well, it’s quite bumpy,” he chuckled. The seemingly infinite variability of turbulence makes it very difficult to simulate an entire aircraft’s interaction with it. At any given second, different parts of a plane experience different impacts from the airflow. Even an exascale computer cannot keep up with storing the enormous volume of data necessary for the job. Added Jansen, “We need to get data insights without the need to write all that information to file. That means we must do co-processing of data real-time as the simulation progresses. We call that process in situ data analytics.” Jansen elaborated, “in situ lets us examine visualizations over time increments, allowing us to see airflow dynamics without writing to file.”

“I’m excited about using Aurora for the first time and performing exascale-level simulations. It will put us at the forefront of predicting and understanding fluid flow around complicated things like airplanes.” Continuing, Jansen added, “We finally have the compute performance to simulate complex airframe components like a full vertical tail and rudder assembly and do it at full scale. That feat has not been accomplished before.”

Rob Johnson spent much of his professional career consulting for a Fortune 25 technology company. Currently, Rob owns Fine Tuning, LLC, a strategic marketing and communications consulting company based in Portland, Oregon. As a technology, audio, and gadget enthusiast his entire life, Rob also writes for TONEAudio Magazine, reviewing high-end home audio equipment.

[*] Editor’s note: Aurora disclosures made in March cited a performance goal of sustained exaflop/s.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Amid Upbeat Earnings, Intel to Cut 1% of Employees, Add as Many

January 24, 2020

For all the sniping two tech old timers take, both IBM and Intel announced surprisingly upbeat earnings this week. IBM CEO Ginny Rometty was all smiles at this week’s World Economic Forum in Davos, Switzerland, after  Read more…

By Doug Black

Indiana University Dedicates ‘Big Red 200’ Cray Shasta Supercomputer

January 24, 2020

After six months of celebrations, Indiana University (IU) officially marked its bicentennial on Monday – and it saved the best for last, inaugurating Big Red 200, a new AI-focused supercomputer that joins the ranks of Read more…

By Staff report

What’s New in HPC Research: Tsunamis, Wildfires, the Large Hadron Collider & More

January 24, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware. In fact, the company's simulated bifurcation algorithm is Read more…

By Tiffany Trader

Energy Research Combines HPC, 3D Manufacturing

January 23, 2020

A federal energy research initiative is gaining momentum with the release of a contract award aimed at using supercomputing to harness 3D printing technology that would boost the performance of power generators. Partn Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

TACC Highlights Its Upcoming ‘IsoBank’ Isotope Database

January 22, 2020

Isotopes – elemental variations that contain different numbers of neutrons – can help researchers unearth the past of an object, especially the few hundred isotopes that are known to be stable over time. However, iso Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware Read more…

By Tiffany Trader

In Advanced Computing and HPC, Dell EMC Sets Sights on the Broader Market Middle 

January 22, 2020

If the leading advanced computing/HPC server vendors were in the batting lineup of a baseball team, Dell EMC would be going for lots of singles and doubles – Read more…

By Doug Black

DNA-Based Storage Nears Scalable Reality with New $25 Million Project

January 21, 2020

DNA-based storage, which involves storing binary code in the four nucleotides that constitute DNA, has been a moonshot for high-density data storage since the 1960s. Since the first successful experiments in the 1980s, researchers have made a series of major strides toward implementing DNA-based storage at scale, such as improving write times and storage density and enabling easier file identification and extraction. Now, a new $25 million... Read more…

By Oliver Peckham

AMD Recruits Intel, IBM Execs; Pending Layoffs Reported at Intel Data Platform Group

January 17, 2020

AMD has raided Intel and IBM for new senior managers, one of whom will replace an AMD executive who has played a prominent role during the company’s recharged Read more…

By Doug Black

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This