IEEE Releases Expansive 2018 Roadmap for Devices and Systems

By John Russell

July 24, 2019

IEEE yesterday released the 2018 update to its International Roadmap for Devices and System (IRDS). It’s part history text, part crystal ball, and as IEEE emphasizes, a key reference for the entire electronics value chain. You may remember this report got its start in ~1998 as the International Technology Roadmap for Semiconductors (ITRS) when the focus was squarely on semiconductor technology. It morphed into the IRDS report in 2017 as the decline in Moore’s Law highlighted the rise of many other factors driving computer performance. IEEE and its collaborators responded by expanding the breadth of the report.

As noted in the announcement: “The updated IRDS includes new information on cryogenic electronics and quantum information processing, added benchmarks for applications, and supplemental information and metrics from the More Moore team. In addition, there’s a newly released summary from Beyond CMOS, and updates for emerging devices, outside systems connectivity technology, factory integration (including smart manufacturing and security topics), metrology, and yield enhancement. Market drivers for medical devices and a new automotive market drivers report are also included.”

Let’s say IRDS is more than light summer reading.

On balance, historical information seems most plentiful and many of the projected trends are familiar; nevertheless there’s plenty to dig into. (Check out HPCwire’s coverage of the final ITRS report, Transistors Won’t Shrink Beyond 2021, Says Final ITRS Report) Below is IEEE’s description of the new report:

“The IRDS is a set of predictions that serves as the successor to the ITRS. The intent is to provide a clear outline to simplify academic, manufacturing, supply, and research coordination regarding the development of electronic devices and systems.

“The goals of the roadmap are as follows:

  1. To identify key trends related to devices, systems, and all related technologies by generating a roadmap with a 15-year horizon
  2. To determine generic devices’ and systems’ needs, challenges, potential solutions, and opportunities for innovation
  3. To encourage related activities worldwide through collaborative events, such as related IEEE conferences and roadmap workshops

“The shift and evolution of the roadmap from the ITRS to the IRDS has translated to an expanded focus on systems. Emphasis has been placed on architectures and applications that deviate from the traditional paradigm of device->circuit->logic gate->functional block->system.”

Those are big objectives. Sorting through the report’s high points is beyond the scope of this article. A fair amount of discussion is given to IoT and cloud computing. HPC proper receives a bit less attention. Best to carve out some beach time for reading. It is interesting to note that the 15-year horizon forecast on some of its predictions seems tenuous or directional at best – it’s hard to know much about what 2033 will look like. One example is shown below with explanatory notes at the bottom of the article.

Among IRDS’s extensive contents, it posits a number of Grand Challenges. The lengthy executive summary (~38 pages) provides an overview. Here are a few elements from a Grand Challenge labelled More Moore:

LOGIC DEVICE SCALING
Beyond 2022 a transition from FinFET to gate-all-around (GAA) will start and potentially a transition to vertical nanowires devices will be needed when there will be no room left for the gate length scale down due to the limits of fin width scaling (saturating the Lgate scaling to sustain the electrostatics control) and contact width.

FinFET and lateral GAA devices enable a higher drive at unit footprint if fin pitch can be aggressively scaled while increasing the fin height. This increased drive at unit footprint by scaling the fin pitch comes at a trade-off between fringing capacitance between gate and contact and series resistance. This trend in reducing the number of fins while balancing the drive with increased fin height is defined as fin depopulation strategy, which also simultaneously reduces the standard cell height, therefore the overall chip area.

The most difficult challenge for interconnects is the introduction of new materials that meet the wire conductivity requirements and reduce dielectric permittivity. As for the conductivity, the impact of size effects on interconnect structures must be mitigated. Future effective κ requirements preclude the use of a trench etch stop for dual damascene structures.

DRAM AND 3D NAND FLASH MEMORY
Since the DRAM storage capacitor gets physically smaller with scaling, the EOT (equivalent oxide thickness) must scale down sharply to maintain adequate storage capacitance. To scale the EOT, dielectric materials having high relative dielectric constant (κ) will be needed. Therefore metal-insulator-metal (MIM) capacitors have been adopted using high-κ (ZrO2/Al2O/ZrO2) as the capacitor of 40−30 nm half-pitch DRAM. This material evolution and improvement will continue until 20 nm high- performance (HP) and ultra-high-κ (perovskite κ > 50 ~ 100) materials are released. Also, the physical thickness of the high-κ insulator should be scaled down to fit the minimum feature size. Due to that, capacitor 3D structure will be changed from cylinder to pillar shape.

It’s probably best to think of IRDS as a living document that has grown by accretion, jettisoning little through the years. The result, perhaps necessarily, is the new material seems perhaps a bit thin. Its strength is still on the “semiconductor side” but expansion to systems and more is the right direction.

“The IRDS continues to lead as the go-to reference for researchers, developers and technologists around the world by providing a comprehensive overview of the computer and electronics industry’s trajectory,” said IEEE Fellow Thomas M. Conte, co-chair, IEEE Rebooting Computing Initiative, vice-chair of IRDS, and professor, Georgia Institute of Technology in the official announcement. “The updated IRDS builds upon 16 years of projecting technology needs for the evolving semiconductor and computer industries.”

“The IRDS represents a global effort needed for future computing systems covering many different applications. These worldwide roadmapping activities will allow our community to identify and overcome emerging challenges in this field and to speed-up technology innovation that can drive the development of future markets,” said Francis Balestra, member, Governing Board of the SiNANO Institute, director of research, The French National Center for Scientific Research (CNRS) and vice president of Grenoble Institute of Technology, also quoted in the release.

IRDS partners with regional roadmaps in Europe and Japan. “There are memorandums of understanding (MoUs) with the NanoElectronics Roadmap for Europe: Identification and Dissemination (NEREID, Horizon 2020), of the SiNANO Institute in Europe, and with the Systems and Devices Roadmap committee of Japan (SDRJ) of the Japan Society of Applied Physics,” according to IEEE.

IEEE reports “The updated IRDS can be downloaded by visiting the IRDS home page and joining the IRDS Technical Community. The IRDS is an IEEE Standards Association (IEEE SA) Industry Connections (IC) Program sponsored by the IEEE Rebooting Computing (IEEE RC) Initiative, a program of IEEE Future Directions.”

Link to IEEE release: https://www.businesswire.com/news/home/20190723005052/en/IEEE-Update-International-Roadmap-Devices-Systems-IRDSTM

Link to IRDS page: https://irds.ieee.org

[1]Notes for Table ES2:

ORTC: Logic Notes[1] Based on 0.71x reduction per “Node Range” (“Node” = ~2x Mx).
[2] Based on 0.71x Mx reduction per “Generic Node”, or .5x cell; 2x density; beginning 2013/”G1″/40nm.
[3] Defined as distance between metallurgical source/drain junctions

ORTC: DRAM Notes
[1] The definition of DRAM Half pitch has been changed from this edition. Because of 6F2 DRAM cell, BL pitch is no more critical dimension. pitch= (Cell Area/ Call size factor)^0.5.”
Critical dimension for process development, the Minimum half pitch is also introduced. Currently Active area (long rectangle island shape) half pitch is the critical dimension of 6F2 DRAM.
Calculated half pitch is use the following equation “Calculated half pitch= (Cell Area/ Call size factor)^0.5.” Critical dimension for process development, the Minimum half pitch is also introduced.
Currently Active area (long rectangle island shape) half pitch is the critical dimension of 6F2 DRAM.
[11] Cell size factor = a = (DRAM cell size/F2), where F is the DRAM 1⁄2 pitch. The current values of a are 6 from 2009. And a=4 will be predicted in 2021.

ORTC: NAND Flash Notes
[1] 2D NAND strings consist of closely packed polysilicon control gates (the Word Lines) that separate the source and drain of devices with no internal contact within the cell.
Up to now this uncontacted word line pitch is still the tightest in all technologies.
[6] The number of 3D layers is not a unique function, depending on the cell 1/2 pitch and 3D NAND technology architecture chosen. Lower number of 3D layers generally has lower bit cost,
but other factors such as decoding method, speed performance, easier or harder to get yield, also need to be considered.
The number of 3D layers spans a range since the same density product may be achieved by using smaller 1/2 pitch and fewer layers, or larger 1/2 pitch and more layers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ll get there at last month’s MIT-IBM Watson AI Lab’s AI Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve the problem, NASA researchers are using the world’s fastes Read more…

By Staff report

Chaminade University’s Immersion Program Builds Capacity for Data Science in Hawaii, Pacific Region

October 10, 2019

Kuleana is a uniquely Hawaiian value and practice which embodies responsibility to self, community, and the ‘aina' (land). At Chaminade University, a federally designated Native Hawaiian serving university in Hawai‘i Read more…

By Faith Singer-Villalobos

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

HPC in the Cloud: Avoid These Common Pitfalls

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community.]

It seems that everyone is experimenting about cloud computing. Read more…

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

NSF Announces New AI Program; Plans $120M in Funding Next Year

October 8, 2019

As the saying goes, when you’re hot, you’re hot. Right now, AI is scalding. Today the National Science Foundation announced a new AI initiative – The National Artificial Intelligence Research Institutes program – with plans to invest about “$120 million in grants next year... Read more…

By Staff report

DOE Sets Sights on Accelerating AI (and other) Technology Transfer

October 3, 2019

For the past two days DOE leaders along with ~350 members from academia and industry gathered in Chicago to discuss AI development and the ways in which industr Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

ISC Keynote: Thomas Sterling’s Take on Whither HPC

June 20, 2019

Entertaining, insightful, and unafraid to launch the occasional verbal ICBM, HPC pioneer Thomas Sterling delivered his 16th annual closing keynote at ISC yesterday. He explored, among other things: exascale machinations; quantum’s bubbling money pot; Arm’s new HPC viability; Europe’s... Read more…

By John Russell

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This