Intel Charges Spark Workloads with Optane Persistent Memory

By Alex Woodie

July 30, 2019

Intel didn’t wow chip lovers earlier this year with the launch of its 2nd Generation Intel Xeon Scalable processors “Cascade Lake” processors, which are based on the same 14nm process as the first generation processors. But the launch also included the delivery of Optane Data Center Persistent Memory Module (DCPMM), which is poised to deliver big benefits for SQL and machine learning workloads on Apache Spark and other frameworks.

Optane is Intel‘s latest storage innovation that blends the characteristics of fast but volatile RAM and slower but persistent NAND storage technology. Originally based on the 3D Xpoint technology that it started co-developing with Micron years ago, the storage-class memory technology was designed to provide a major boost in the ability of users to work with large data sets by providing the speed of DRAM but the capacity and persistence of NAND.

Intel already shipped an Optane product in the form of NVMe drive, and now it’s coming to market in the guise of Optane DCPMMs. Delivered as standard DIMMs, Optane DCPMMs plug right into the PCIe bus on industry-standard X86 servers. Those systems will, however, need to be running Cascade Lake processors, while the NVMe format was more flexible in system configurations. However, what the DCPMM lacks in flexibility it should make up in capability.

Intel is shipping DCPMMs in three sizes: 128GB, 256GB, and 512GB. Each DCPMM requires its own memory channel, and customers can load up to six DCPMM DIMMs in single socket. Users can co-locate DCPMMs next to DRAM, but they cannot use multiple sizes of DCPMMs.

This gives customers with a two-socket server the capability to have up to 6TB of memory per server, according Intel engineer Piotr Balcer, who spoke at Databricks’ Spark + AI Summit 2019 recently. “Quite a lot of space for your whole data,” he said.

With multiple servers, DCPMM enables customers to store up to 1PB of data in 1U of a rack, Intel said.

Speeding Data with Optane

There are two modes supported with Optane DCPMM: App Direct mode and Memory Mode (there’s also Storage Over App Direct Mode).

Users who want to take advantage of Optane’s data persistence capabilities will need to choose App Direct mode, since the data is wiped clean during power shutdowns in Memory Mode, which is how traditional DRAM works. (But because DCPMMs are still cheaper than traditional DRAM DIMMs, Optane retains an advantage.)

Balcer and his Intel colleague Cheng Xu demonstrated how Spark users can get a performance boost during their Spark + AI Summit session, titled “Accelerate Your Apache Spark with Intel Optane DC Persistent Memory.”

“Persistent memory is exposed to the application through the file system,” Balcer said. “It uses the same normal interface as storage.” Currently DCPMM supports XFS, EXT4, and NTFS file systems, using those file systems’ block storage system calls to read and write data.

“It behaves like DRAM for access, so you can use normal load semantics, which means we don’t have to go through the kernel,” he said. “We don’t have to have that control point.”

To enable applications to directly access data and use normal load storage instructions, Intel developed something called DAX, which stands for direct access, Balcer said.

“Which means it allows the application to mount the persistent memory into the other space of the application, and bypass the page cache, because the page cache is what you traditionally will use when you use memory mounts,” he said. “Because we now have very, very fast memory, we don’t really need the page cache to amortize the block storage.”

Using the DAX layer, DCPMM enables users to mount persistent memory into the address space of the application and then use the load store instructions of the CPU, which is the fastest data path the application can take, Balcer said.

“What this ultimately means,” he continued, “is that the application can now store data persistently on storage yielding the load store instructions of the CPU, and that was never possible before. So there’s nothing in between the application and the storage. There’s no software. There’s no firmware. Well, there is firmware, but there’s nothing in the kernel space that interferes with the application performance.”

Spark on Optane

The performance benefits of DCPMM are directly applicable to Spark SQL and machine learning workloads that are either memory-bound or are burdened by large amounts of I/O, the Intel engineers told the Spark + AI audience.

In App Direct Mode, DCPMM has the potential to move data at multiple tens of gigabytes per second with nanosecond latencies, compared to single-digit GB/s on throughput with microsecond latencies with fast NAND-based solid state disks, according to Lenovo’s handbook on DCPMM.

However, achieving those rates requires users to specially configure their DCPMM setup, Lenovo states. “If an application hasn’t been modified to support App Direct Mode, it can utilize DCPMM in Storage over App Direct Mode operation, which is a more conventional setup using a supported DAX model in the operating system,” the vendor writes.

Intel has addressed this requirement by developing special software that allows Spark users to take full advantage of the DCPMM capabilities, without modifying their Spark machine learning or SQL applications.

Intel’s Spark on DCPMM stack consists of several layers, including a DAX file system interface discussed above, Intel’s native DCPMM library dubbed VMEMCACHE, and OAP, or the Open Analytics Packager.

The Scala-based OAP contains several elements that make it easy for Spark users to take advantage of DCPMM with their SQL and machine learning workloads, According to Xu.

“Today Spark is running very fast and very easy for the user to use. But sometimes a customer may be facing a memory issue,” Xu said. “We hear a lot of customer complaining about memory usage, so that sometimes they try to config the memory for specific workload, but when they try to run another workload, they run into other issues.”

Optimizing Spark’s usage of memory is one of the goals of OAP, which is a free and open source piece of software that users can obtain at Github. OAP levaerges DCPMM to bring three key capabilities to Spark users, including a front-end I/O cache, a cache-aware scheduler, and self-management of off-heap memory.

The I/O cache will be especially useful for Spark SQL and machine learning users who are pulling data from slower data stores, including on-premise hard disk drives and also from remote BLOB stores, such as Azure ALDS or Amazon S3, Xu said.

“For example, you have a table ABC, but for your workload, you just access the first column A,” Xu said. “In our implementation, we just cache column A because column A is hotter data compared to the rest of the columns.”

The I/O cache will also help machine learning use cases on Spark, Xu said, particularly for algorithms with an interactive nature, such as Kmeans. “Now we have a very large capacity of memory, so you can put the entire data set into the Optane persistent memory, so you can achieve even better performance than the previous tiered storage design,” he said.

OAP’s cache-aware scheduler will also boost performance for Spark users by optimizing workloads according to data locality, Xu said. The cache-aware scheduler is based on Apache Spark version 2.0 APIs, he added. Lastly, better management of off-heap memory will also boost Spark application, Xu said.

You can access the Intel employees’ recorded Spark + AI Summit session here.

This article originally appeared at sister publication Datanami.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

German Aerospace Center Debuts AMD-Powered CARA Supercomputer

February 18, 2020

The German Aerospace Center (DLR) launched its new high-performance computer CARA (Computer for Advanced Research in Aerospace) at TU Dresden on February 5, 2020. Built by NEC and powered by first-generation AMD Epyc 7601 processors with a budget of more than 20 million Euros, CARA will... Read more…

By Staff report

Berkeley Lab to Tackle Particle Physics with Quantum Computing

February 18, 2020

Massive-scale particle physics produces correspondingly large amounts of data – and this is particularly true of the Large Hadron Collider (LHC), the world’s largest particle accelerator, which is housed at the Europ Read more…

By Staff report

Supercomputer Simulations Validate NASA Crash Testing

February 17, 2020

Car crash simulation is already a challenging supercomputing task, requiring pinpoint estimation of how hundreds of components interact with turbulent forces and human bodies. Spacecraft crash simulation is far more diff Read more…

By Oliver Peckham

What’s New in HPC Research: Quantum Clouds, Interatomic Models, Genetic Algorithms & More

February 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or at least, pull off the cloud HPC equivalent. As part of thei Read more…

By Oliver Peckham

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

ORNL Team Develops AI-based Cancer Text Mining Tool on Summit

February 13, 2020

A group of Oak Ridge National Laboratory researchers working on the Summit supercomputer has developed a new neural network tool for fast extraction of information from cancer pathology reports to speed research and clin Read more…

By John Russell

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Intel Stopping Nervana Development to Focus on Habana AI Chips

February 3, 2020

Just two months after acquiring Israeli AI chip start-up Habana Labs for $2 billion, Intel is stopping development of its existing Nervana neural network proces Read more…

By John Russell

Lise Supercomputer, Part of HLRN-IV, Begins Operations

January 29, 2020

The second phase of the build-out of HLRN-IV – the planned 16 peak-petaflops supercomputer serving the North-German Supercomputing Alliance (HLRN) – is unde Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This