Intel Charges Spark Workloads with Optane Persistent Memory

By Alex Woodie

July 30, 2019

Intel didn’t wow chip lovers earlier this year with the launch of its 2nd Generation Intel Xeon Scalable processors “Cascade Lake” processors, which are based on the same 14nm process as the first generation processors. But the launch also included the delivery of Optane Data Center Persistent Memory Module (DCPMM), which is poised to deliver big benefits for SQL and machine learning workloads on Apache Spark and other frameworks.

Optane is Intel‘s latest storage innovation that blends the characteristics of fast but volatile RAM and slower but persistent NAND storage technology. Originally based on the 3D Xpoint technology that it started co-developing with Micron years ago, the storage-class memory technology was designed to provide a major boost in the ability of users to work with large data sets by providing the speed of DRAM but the capacity and persistence of NAND.

Intel already shipped an Optane product in the form of NVMe drive, and now it’s coming to market in the guise of Optane DCPMMs. Delivered as standard DIMMs, Optane DCPMMs plug right into the PCIe bus on industry-standard X86 servers. Those systems will, however, need to be running Cascade Lake processors, while the NVMe format was more flexible in system configurations. However, what the DCPMM lacks in flexibility it should make up in capability.

Intel is shipping DCPMMs in three sizes: 128GB, 256GB, and 512GB. Each DCPMM requires its own memory channel, and customers can load up to six DCPMM DIMMs in single socket. Users can co-locate DCPMMs next to DRAM, but they cannot use multiple sizes of DCPMMs.

This gives customers with a two-socket server the capability to have up to 6TB of memory per server, according Intel engineer Piotr Balcer, who spoke at Databricks’ Spark + AI Summit 2019 recently. “Quite a lot of space for your whole data,” he said.

With multiple servers, DCPMM enables customers to store up to 1PB of data in 1U of a rack, Intel said.

Speeding Data with Optane

There are two modes supported with Optane DCPMM: App Direct mode and Memory Mode (there’s also Storage Over App Direct Mode).

Users who want to take advantage of Optane’s data persistence capabilities will need to choose App Direct mode, since the data is wiped clean during power shutdowns in Memory Mode, which is how traditional DRAM works. (But because DCPMMs are still cheaper than traditional DRAM DIMMs, Optane retains an advantage.)

Balcer and his Intel colleague Cheng Xu demonstrated how Spark users can get a performance boost during their Spark + AI Summit session, titled “Accelerate Your Apache Spark with Intel Optane DC Persistent Memory.”

“Persistent memory is exposed to the application through the file system,” Balcer said. “It uses the same normal interface as storage.” Currently DCPMM supports XFS, EXT4, and NTFS file systems, using those file systems’ block storage system calls to read and write data.

“It behaves like DRAM for access, so you can use normal load semantics, which means we don’t have to go through the kernel,” he said. “We don’t have to have that control point.”

To enable applications to directly access data and use normal load storage instructions, Intel developed something called DAX, which stands for direct access, Balcer said.

“Which means it allows the application to mount the persistent memory into the other space of the application, and bypass the page cache, because the page cache is what you traditionally will use when you use memory mounts,” he said. “Because we now have very, very fast memory, we don’t really need the page cache to amortize the block storage.”

Using the DAX layer, DCPMM enables users to mount persistent memory into the address space of the application and then use the load store instructions of the CPU, which is the fastest data path the application can take, Balcer said.

“What this ultimately means,” he continued, “is that the application can now store data persistently on storage yielding the load store instructions of the CPU, and that was never possible before. So there’s nothing in between the application and the storage. There’s no software. There’s no firmware. Well, there is firmware, but there’s nothing in the kernel space that interferes with the application performance.”

Spark on Optane

The performance benefits of DCPMM are directly applicable to Spark SQL and machine learning workloads that are either memory-bound or are burdened by large amounts of I/O, the Intel engineers told the Spark + AI audience.

In App Direct Mode, DCPMM has the potential to move data at multiple tens of gigabytes per second with nanosecond latencies, compared to single-digit GB/s on throughput with microsecond latencies with fast NAND-based solid state disks, according to Lenovo’s handbook on DCPMM.

However, achieving those rates requires users to specially configure their DCPMM setup, Lenovo states. “If an application hasn’t been modified to support App Direct Mode, it can utilize DCPMM in Storage over App Direct Mode operation, which is a more conventional setup using a supported DAX model in the operating system,” the vendor writes.

Intel has addressed this requirement by developing special software that allows Spark users to take full advantage of the DCPMM capabilities, without modifying their Spark machine learning or SQL applications.

Intel’s Spark on DCPMM stack consists of several layers, including a DAX file system interface discussed above, Intel’s native DCPMM library dubbed VMEMCACHE, and OAP, or the Open Analytics Packager.

The Scala-based OAP contains several elements that make it easy for Spark users to take advantage of DCPMM with their SQL and machine learning workloads, According to Xu.

“Today Spark is running very fast and very easy for the user to use. But sometimes a customer may be facing a memory issue,” Xu said. “We hear a lot of customer complaining about memory usage, so that sometimes they try to config the memory for specific workload, but when they try to run another workload, they run into other issues.”

Optimizing Spark’s usage of memory is one of the goals of OAP, which is a free and open source piece of software that users can obtain at Github. OAP levaerges DCPMM to bring three key capabilities to Spark users, including a front-end I/O cache, a cache-aware scheduler, and self-management of off-heap memory.

The I/O cache will be especially useful for Spark SQL and machine learning users who are pulling data from slower data stores, including on-premise hard disk drives and also from remote BLOB stores, such as Azure ALDS or Amazon S3, Xu said.

“For example, you have a table ABC, but for your workload, you just access the first column A,” Xu said. “In our implementation, we just cache column A because column A is hotter data compared to the rest of the columns.”

The I/O cache will also help machine learning use cases on Spark, Xu said, particularly for algorithms with an interactive nature, such as Kmeans. “Now we have a very large capacity of memory, so you can put the entire data set into the Optane persistent memory, so you can achieve even better performance than the previous tiered storage design,” he said.

OAP’s cache-aware scheduler will also boost performance for Spark users by optimizing workloads according to data locality, Xu said. The cache-aware scheduler is based on Apache Spark version 2.0 APIs, he added. Lastly, better management of off-heap memory will also boost Spark application, Xu said.

You can access the Intel employees’ recorded Spark + AI Summit session here.

This article originally appeared at sister publication Datanami.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Dark Matter, Arrhythmia, Sustainability & More

February 28, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Microsoft Announces General Availability of AMD-backed Azure HBv2 Instances for HPC

February 27, 2020

Nearly seven months after they were first announced, Microsoft Azure’s HPC-targeted HBv2 virtual machines (VMs) based on AMD second-generation Epyc processors are ready for primetime. The new VMs, which Azure claims of Read more…

By Staff report

Sequoia Decommissioned, Making Room for El Capitan

February 27, 2020

After eight years of service, Sequoia has been felled. Once the most powerful publicly ranked supercomputer in the world, Sequoia – hosted by Lawrence Livermore National Laboratory (LLNL) – has been decommissioned to Read more…

By Oliver Peckham

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Blue Waters Supercomputer Helps Tackle Pandemic Flu Simulations

February 26, 2020

While not the novel coronavirus that is now sweeping across the world, the 2009 H1N1 flu pandemic (pH1N1) infected up to 21 percent of the global population and killed over 200,000 people. Now, a team of researchers from Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Micron Accelerator Bumps Up Memory Bandwidth

February 26, 2020

Deep learning accelerators based on chip architectures coupled with high-bandwidth memory are emerging to enable near real-time processing of machine learning algorithms. Memory chip specialist Micron Technology argues t Read more…

By George Leopold

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

NOAA Lays Out Aggressive New AI Strategy

February 24, 2020

Roughly coincident with last week’s announcement of a planned tripling of its compute capacity, the National Oceanic and Atmospheric Administration issued an Read more…

By John Russell

New Supercomputer Cooling Method Saves Half-Million Gallons of Water at Sandia National Laboratories

February 24, 2020

A new cooling method for supercomputer systems is picking up steam – literally. After saving millions of gallons of water at a National Renewable Energy Laboratory (NREL) datacenter, this innovative approach, called... Read more…

By Oliver Peckham

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This